ATP Binding as a Key Target for Control of the Chemotaxis Kinase

Author:

Jun Se-Young,Pan Wenlin,Hazelbauer Gerald L.

Abstract

ABSTRACT In bacterial chemotaxis, chemoreceptors in signaling complexes modulate the activity of two-component histidine kinase CheA in response to chemical stimuli. CheA catalyzes phosphoryl transfer from ATP to a histidinyl residue of its P1 domain. That phosphoryl group is transferred to two response regulators. Receptor control is almost exclusively at autophosphorylation, but the aspect of enzyme action on which that control acts is unclear. We investigated this by a kinetic analysis of activated kinase in signaling complexes. We found that phosphoryl transfer from ATP to P1 is an ordered sequential reaction in which the binding of ATP to CheA is the necessary first step; the second substrate, the CheA P1 domain, binds only to an ATP-occupied enzyme; and phosphorylated P1 is released prior to the second product, namely, ADP. We confirmed the crucial features of this kinetically deduced ordered mechanism by assaying P1 binding to the enzyme. In the absence of a bound nucleotide, there was no physiologically significant binding, but the enzyme occupied with a nonhydrolyzable ATP analog bound P1. Previous structural and computational analyses indicated that ATP binding creates the P1-binding site by ordering the “ATP lid.” This process identifies the structural basis for the ordered kinetic mechanism. Recent mathematical modeling of kinetic data identified ATP binding as a focus of receptor-mediated kinase control. The ordered kinetic mechanism provides the biochemical logic of that control. We conclude that chemoreceptors modulate kinase by controlling ATP binding. Structural similarities among two-component kinases, particularly the ATP lid, suggest that ordered mechanisms and control of ATP binding are general features of two-component signaling. IMPORTANCE Our work provides important new insights into the action of the chemotaxis signaling kinase CheA by identifying the kinetic mechanism of its autophosphorylation as an ordered sequential reaction, in which the required first step is binding of ATP. These insights provide a framework for integrating previous kinetic, mathematical modeling, structural, simulation, and docking observations to conclude that chemoreceptors control the activity of the chemotaxis kinase by regulating binding of the autophosphorylation substrate ATP. Previously observed conformational changes in the ATP lid of the enzyme active site provide a structural basis for the ordered mechanism. Such lids are characteristic of two-component histidine kinases in general, suggesting that ordered sequential mechanisms and regulation by controlling ATP binding are common features of these kinases.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3