Bacterial chemoreceptor signaling complexes control kinase activity by stabilizing the catalytic domain of CheA

Author:

Tran Thomas1ORCID,Karunanayake Mudiyanselage Aruni P. K. K.2,Eyles Stephen J.13ORCID,Thompson Lynmarie K.12ORCID

Affiliation:

1. Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003

2. Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003

3. Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003

Abstract

Motile bacteria have a chemotaxis system that enables them to sense their environment and direct their swimming toward favorable conditions. Chemotaxis involves a signaling process in which ligand binding to the extracellular domain of the chemoreceptor alters the activity of the histidine kinase, CheA, bound ~300 Å away to the distal cytoplasmic tip of the receptor, to initiate a phosphorylation cascade that controls flagellar rotation. The cytoplasmic domain of the receptor is thought to propagate this signal via changes in dynamics and/or stability, but it is unclear how these changes modulate the kinase activity of CheA. To address this question, we have used hydrogen deuterium exchange mass spectrometry to probe the structure and dynamics of CheA within functional signaling complexes of the Escherichia coli aspartate receptor cytoplasmic fragment, CheA, and CheW. Our results reveal that stabilization of the P4 catalytic domain of CheA correlates with kinase activation. Furthermore, differences in activation of the kinase that occur during sensory adaptation depend on receptor destabilization of the P3 dimerization domain of CheA. Finally, hydrogen exchange properties of the P1 domain that bears the phosphorylated histidine identify the dimer interface of P1/P1’ in the CheA dimer and support an ordered sequential binding mechanism of catalysis, in which dimeric P1/P1’ has productive interactions with P4 only upon nucleotide binding. Thus stabilization/destabilization of domains is a key element of the mechanism of modulating CheA kinase activity in chemotaxis, and may play a role in the control of other kinases.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3