Zinc Acquisition Mechanisms Differ between Environmental and Virulent Francisella Species

Author:

Moreau G. Brett1ORCID,Qin Aiping2ORCID,Mann Barbara J.12ORCID

Affiliation:

1. Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA

2. Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA

Abstract

ABSTRACT Zinc is an essential nutrient for bacterial growth. Because host cells can restrict pathogen access to zinc as an antimicrobial defense mechanism, intracellular pathogens such as Francisella must sense their environment and acquire zinc in response. In many bacteria, the conserved transcription factor Zur is a key regulator of zinc acquisition. To identify mechanisms of zinc uptake in Francisella novicida U112, transcriptome sequencing of wild-type and putative zur mutant bacteria was performed. Only three genes were confirmed as directly regulated by Zur and zinc limitation by quantitative reverse transcription-PCR. One of these genes, FTN_0879, is predicted to encode a protein with similarity to the zupT family of zinc transporters, which are not typically regulated by Zur. While a putative znuACB operon encoding a high-affinity zinc transporter was identified in U112, expression of this operon was not controlled by Zur or zinc concentration. Disruption of zupT but not znuA in U112 impaired growth under zinc limitation, suggesting that ZupT is the primary mechanism of zinc acquisition under these conditions. In the virulent Francisella tularensis subsp. tularensis Schu S4 strain, zupT is a pseudogene, and attempts to delete znuA were unsuccessful, suggesting that it is essential in this strain. A reverse TetR repression system was used to knock down the expression of znuA in Schu S4, revealing that znuA is required for growth under zinc limitation and contributes to intracellular growth within macrophages. Overall, this work identifies genes necessary for adaptation to zinc limitation and highlights nutritional differences between environmental and virulent Francisella strains. IMPORTANCE Francisella tularensis is a tier 1 select agent with a high potential for lethality and no approved vaccine. A better understanding of Francisella virulence factors is required for the development of therapeutics. While acquisition of zinc has been shown to be required for the virulence of numerous intracellular pathogens, zinc uptake has not been characterized in Francisella . This work characterizes the Zur regulon in F. novicida and identifies two transporters that contribute to bacterial growth under zinc limitation. In addition, these data identify differences in mechanisms of zinc uptake and tolerance to zinc limitation between F. tularensis and F. novicida , highlighting the role of znuA in the growth of Schu S4 under zinc limitation.

Funder

NIH NIAID

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3