Subcellular Localization and Assembly Process of the Nisin Biosynthesis Machinery in Lactococcus lactis

Author:

Chen Jingqi1ORCID,van Heel Auke J.1ORCID,Kuipers Oscar P.1ORCID

Affiliation:

1. Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands

Abstract

Nisin is the model peptide for LanBC-modified lantibiotics that are commonly modified and exported by a putative synthetase complex. Although the mechanism of maturation, transport, immunity, and regulation is relatively well understood, and structural information is available for some of the proteins involved (B. Li, J. P. J. Yu, J. S. Brunzelle, G. N. Moll, et al., Science 311:1464–1467, 2006, https://doi.org/10.1126/science.1121422 ; M. A. Ortega, Y. Hao, Q. Zhang, M. C. Walker, et al., Nature 517:509–512, 2015, https://doi.org/10.1038/nature13888 ; C. Hacker, N. A. Christ, E. Duchardt-Ferner, S. Korn, et al., J Biol Chem 290:28869–28886, 2015, https://doi.org/10.1074/jbc.M115.679969 ; Y. Y. Xu, X. Li, R. Q. Li, S. S. Li, et al., Acta Crystallogr D Biol Crystallogr 70:1499–1505, 2014, https://doi.org/10.1107/S1399004714004234 ), the subcellular localization and assembly process of the biosynthesis complex remain to be elucidated. In this study, we determined the spatial distribution of nisin synthesis-related enzymes and the transporter, revealing that the modification and secretion of the precursor nisin mainly occur at the old cell poles of L. lactis and that the transporter NisT is probably recruited later to this spot after the completion of the modification reactions by NisB and NisC. Fluorescently labeled nisin biosynthesis machinery was visualized directly by fluorescence microscopy. To our knowledge, this is the first study to provide direct evidence of the existence of such a complex in vivo . Importantly, the elucidation of the “order of assembly” of the complex will facilitate future endeavors in the investigation of the nisin secretion mechanism and even the isolation and structural characterization of the complete complex.

Funder

China Scholarship Council

EU Horizon 2020 grant

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3