The keystone gut species Christensenella minuta boosts gut microbial biomass and voluntary physical activity in mice

Author:

Akbuğa-Schön Tanja1ORCID,Suzuki Taichi A.1ORCID,Jakob Dennis12,Vu Dai Long2,Waters Jillian L.1,Ley Ruth E.13ORCID

Affiliation:

1. Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany

2. Mass Spectrometry Facility, Max Planck Institute for Biology Tübingen, Tübingen, Germany

3. Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany

Abstract

ABSTRACT The gut bacteria of the family Christensenellaceae are consistently associated with metabolic health, but their role in promoting host health is not fully understood. Here, we explored the effect of Christensenella minuta amendment on voluntary physical activity and the gut microbiome. We inoculated male and female germ-free mice with an obese human donor microbiota together with live or heat-killed C. minuta for 28 days and measured physical activity in respirometry cages. Compared to heat-killed, the live- C. minuta treatment resulted in reduced feed efficiency and higher levels of physical activity, with significantly greater distance traveled for males and higher levels of small movements and resting metabolic rate in females. Sex-specific effects of C. minuta treatment may be in part attributable to different housing conditions for males and females. Amendment with live C. minuta boosted gut microbial biomass in both sexes, immobilizing dietary carbon in the microbiome, and mice with high levels of C. minuta lose more energy in stool. Live C. minuta also reduced within and between-host gut microbial diversity. Overall, our results showed that C. minuta acts as a keystone species: despite low relative abundance, it has a large impact on its ecosystem, from the microbiome to host energy homeostasis. IMPORTANCE The composition of the human gut microbiome is associated with human health. Within the human gut microbiome, the relative abundance of the bacterial family Christensenellaceae has been shown to correlate with metabolic health and a lean body type. The mechanisms underpinning this effect remain unclear. Here, we show that live C. minuta influences host physical activity and metabolic energy expenditure, accompanied by changes in murine metabolism and the gut microbial community in a sex-dependent manner in comparison to heat-killed C. minuta . Importantly, live C. minuta boosts the biomass of the microbiome in the gut, and a higher level of C. minuta is associated with greater loss of energy in stool. These observations indicate that modulation of activity levels and changes to the microbiome are ways in which the Christensenellaceae can influence host energy homeostasis and health.

Funder

Max-Planck-Gesellschaft

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Christensenella minuta interacts with multiple gut bacteria;Frontiers in Microbiology;2024-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3