Polysaccharide capsule-mediated resistance to opsonophagocytosis in Klebsiella pneumoniae

Author:

Domenico P1,Salo R J1,Cross A S1,Cunha B A1

Affiliation:

1. Infectious Disease Division, Winthrop-University Hospital, Mineola, New York.

Abstract

The polysaccharide capsule of Klebsiella pneumoniae is an important virulence factor that confers resistance to phagocytosis. The treatment of encapsulated bacteria with salicylate to inhibit capsule expression was found to enhance the phagocytosis of encapsulated bacteria by human neutrophils only in the presence of cell surface-specific antibodies. Both type-specific rabbit antisera and anticapsular human hyperimmune globulin were employed as opsonins. Salicylate significantly enhanced phagocytosis with homologous, but not heterologous, whole-cell antisera. Antisera, diluted 1:40, no longer opsonized fully encapsulated bacteria but promoted the uptake of multiple salicylate-treated bacteria in > 90% of neutrophils. Salicylate (0.25 to 1.0 mM) also enhanced opsonization with globulin against homologous bacteria. Higher salicylate levels (1 to 2.5 mM) enhanced the opsonization of heterologous serotypes with human globulin. The nature of antibody attachment to encapsulated bacteria was determined by immunofluorescence. Even after the addition of purified capsular polysaccharide to prevent phagocytosis, K-specific antibodies attached in large amounts to bacteria. K-specific antibodies reacted with antigens throughout the capsule and showed a predilection for a denser inner layer of the capsule, indicating that many of the K-specific antibodies may be masked underneath the capsule surface. K-specific antibodies can also be rendered nonfunctional by soluble, cell-free capsular antigen. In culture, large quantities of soluble capsular polysaccharide extrude from bacteria after overnight growth. The reduction in capsule expression caused by salicylate largely affected the soluble, cell-free fraction. Purified capsular polysaccharide was shown to retard the opsonophagocytosis of salicylate-treated bacteria in a concentration-dependent manner. However, extensive washing of encapsulated bacteria to remove loosely attached capsular material did not significantly enhance opsonophagocytosis. In conclusion, cell-free capsule and cell-associated capsule are antiphagocytic; both act to neutralize K-specific antibodies by binding or concealment. Salicylate-mediated inhibition of capsule expression, particularly of the cell-free fraction, improved K-specific opsonization dramatically.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference26 articles.

1. Immunologic paralysis in mice by Klebsiella pneumoniae type 2 polysaccharide;Batshon B. A.;J. Immunol.,1963

2. New method for quantitative determination of uronic acids;Blumenkrantz N.;Anal. Biochem.,1973

3. Escherichia coli and Kiebsiella vaccines and immunotherapy;Cross A. S.;Infect. Dis. Clin. N. Am.,1990

4. Kiebsiella polysaccharide vaccines;Cryz S. J.;Adv. Biotechnol. Processes,1990

5. Activity of intravenous immune globulins against Kiebsiella;Cryz S. J.;J. Lab. Clin. Med.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3