Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var. grubii and C. gattii

Author:

Chen Yuan12ORCID,Farrer Rhys A.3,Giamberardino Charles1,Sakthikumar Sharadha3,Jones Alexander1,Yang Timothy1,Tenor Jennifer L.1,Wagih Omar4,Van Wyk Marelize5,Govender Nelesh P.5,Mitchell Thomas G.2,Litvintseva Anastasia P.6,Cuomo Christina A.3ORCID,Perfect John R.1

Affiliation:

1. Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA

2. Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA

3. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA

4. European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom

5. National Institute for Communicable Diseases (Centre for Opportunistic, Tropical, and Hospital Infections), A Division of the National Health Laboratory Service, Johannesburg, South Africa

6. Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Abstract

ABSTRACT The pathogenic species of Cryptococcus are a major cause of mortality owing to severe infections in immunocompromised as well as immunocompetent individuals. Although antifungal treatment is usually effective, many patients relapse after treatment, and in such cases, comparative analyses of the genomes of incident and relapse isolates may reveal evidence of determinative, microevolutionary changes within the host. Here, we analyzed serial isolates cultured from cerebrospinal fluid specimens of 18 South African patients with recurrent cryptococcal meningitis. The time between collection of the incident isolates and collection of the relapse isolates ranged from 124 days to 290 days, and the analyses revealed that, during this period within the patients, the isolates underwent several genetic and phenotypic changes. Considering the vast genetic diversity of cryptococcal isolates in sub-Saharan Africa, it was not surprising to find that the relapse isolates had acquired different genetic and correlative phenotypic changes. They exhibited various mechanisms for enhancing virulence, such as growth at 39°C, adaptation to stress, and capsule production; a remarkable amplification of ERG11 at the native and unlinked locus may provide stable resistance to fluconazole. Our data provide a deeper understanding of the microevolution of Cryptococcus species under pressure from antifungal chemotherapy and host immune responses. This investigation clearly suggests a promising strategy to identify novel targets for improved diagnosis, therapy, and prognosis. IMPORTANCE Opportunistic infections caused by species of the pathogenic yeast Cryptococcus lead to chronic meningoencephalitis and continue to ravage thousands of patients with HIV/AIDS. Despite receiving antifungal treatment, over 10% of patients develop recurrent disease. In this study, we collected isolates of Cryptococcus from cerebrospinal fluid specimens of 18 patients at the time of their diagnosis and when they relapsed several months later. We then sequenced and compared the genomic DNAs of each pair of initial and relapse isolates. We also tested the isolates for several key properties related to cryptococcal virulence as well as for their susceptibility to the antifungal drug fluconazole. These analyses revealed that the relapsing isolates manifested multiple genetic and chromosomal changes that affected a variety of genes implicated in the pathogenicity of Cryptococcus or resistance to fluconazole. This application of comparative genomics to serial clinical isolates provides a blueprint for identifying the mechanisms whereby pathogenic microbes adapt within patients to prolong disease.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3