Generation of High Current Densities by Pure Cultures of Anode-Respiring Geoalkalibacter spp. under Alkaline and Saline Conditions in Microbial Electrochemical Cells

Author:

Badalamenti Jonathan P.12,Krajmalnik-Brown Rosa13,Torres César I.14

Affiliation:

1. Swette Center for Environmental Biotechnology, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA

2. School of Life Sciences, Arizona State University, Tempe, Arizona, USA

3. School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, USA

4. Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, USA

Abstract

ABSTRACT Anode-respiring bacteria (ARB) generate electric current in microbial electrochemical cells (MXCs) by channeling electrons from the oxidation of organic substrates to an electrode. Production of high current densities by monocultures in MXCs has resulted almost exclusively from the activity of Geobacter sulfurreducens , a neutrophilic freshwater Fe(III)-reducing bacterium and the highest-current-producing member documented for the Geobacteraceae family of the Deltaproteobacteria . Here we report high current densities generated by haloalkaliphilic Geoalkalibacter spp., thus broadening the capability for high anode respiration rates by including other genera within the Geobacteraceae . In this study, acetate-fed pure cultures of two related Geoalkalibacter spp. produced current densities of 5.0 to 8.3 and 2.4 to 3.3 A m −2 under alkaline (pH 9.3) and saline (1.7% NaCl) conditions, respectively. Chronoamperometric studies of halophilic Glk. subterraneus DSM 23483 and alkaliphilic Glk. ferrihydriticus DSM 17813 suggested that cells performed long-range electron transfer through electrode-attached biofilms and not through soluble electron shuttles. Glk. ferrihydriticus also oxidized ethanol directly to produce current, with maximum current densities of 5.7 to 7.1 A m −2 and coulombic efficiencies of 84 to 95%. Cyclic voltammetry (CV) elicited a sigmoidal response with characteristic onset, midpoint, and saturation potentials, while CV performed in the absence of an electron donor suggested the involvement of redox molecules in the biofilm that were limited by diffusion. These results matched those previously reported for actively respiring Gb. sulfurreducens biofilms producing similar current densities (~5 to 9 A m −2 ). IMPORTANCE This study establishes the highest current densities ever achieved by pure cultures of anode-respiring bacteria (ARB) under alkaline and saline conditions in microbial electrochemical cells (MXCs) and provides the first electrochemical characterization of the genus Geoalkalibacter . Production of high current densities among the Geobacteraceae is no longer exclusive to Geobacter sulfurreducens , suggesting greater versatility for this family in fundamental and applied microbial electrochemical cell (MXC) research than previously considered. Additionally, this work raises the possibility that different members of the Geobacteraceae have conserved molecular mechanisms governing respiratory extracellular electron transfer to electrodes. Thus, the capacity for high current generation may exist in other uncultivated members of this family. Advancement of MXC technology for practical uses must rely on an expanded suite of ARB capable of using different electron donors and producing high current densities under various conditions. Geoalkalibacter spp. can potentially broaden the practical capabilities of MXCs to include energy generation and waste treatment under expanded ranges of salinity and pH.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3