Abstract
AbstractExtracellular electron transfer (EET) via microbial nanowires drives globally-important environmental processes and biotechnological applications for bioenergy, bioremediation, and bioelectronics. Due to highly-redundant and complex EET pathways, it is unclear how microbes wire electrons rapidly (>106 s−1) from the inner-membrane through outer-surface nanowires directly to an external environment despite a crowded periplasm and slow (<105 s−1) electron diffusion among periplasmic cytochromes. Here, we show that Geobacter sulfurreducens periplasmic cytochromes PpcABCDE inject electrons directly into OmcS nanowires by binding transiently with differing efficiencies, with the least-abundant cytochrome (PpcC) showing the highest efficiency. Remarkably, this defined nanowire-charging pathway is evolutionarily conserved in phylogenetically-diverse bacteria capable of EET. OmcS heme reduction potentials are within 200 mV of each other, with a midpoint 82 mV-higher than reported previously. This could explain efficient EET over micrometres at ultrafast (<200 fs) rates with negligible energy loss. Engineering this minimal nanowire-charging pathway may yield microbial chassis with improved performance.
Funder
National Science Foundation
Human Frontier Science Program
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献