In Vivo -Validated Essential Genes Identified in Acinetobacter baumannii by Using Human Ascites Overlap Poorly with Essential Genes Detected on Laboratory Media

Author:

Umland Timothy C.12,Schultz L. Wayne12,MacDonald Ulrike345,Beanan Janet M.345,Olson Ruth345,Russo Thomas A.3456

Affiliation:

1. Hauptman-Woodward Medical Research Institute, Buffalo, New York, USA

2. Departments of Structural Biology, University at Buffalo, State University of New York, Buffalo, New York, USA

3. Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA

4. Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York, USA

5. Witebsky Center for Microbial Pathogenesis, University at Buffalo, State University of New York, Buffalo, New York, USA

6. Veterans Administration Western New York Healthcare System, Buffalo, New York, USA

Abstract

ABSTRACT A critical feature of a potential antimicrobial target is the characteristic of being essential for growth and survival during host infection. For bacteria, genome-wide essentiality screens are usually performed on rich laboratory media. This study addressed whether genes detected in that manner were optimal for the identification of antimicrobial targets since the in vivo milieu is fundamentally different. Mutant derivatives of a clinical isolate of Acinetobacter baumannii were screened for growth on human ascites, an ex vivo medium that reflects the infection environment. A subset of 34 mutants with unique gene disruptions that demonstrated little to no growth on ascites underwent evaluation in a rat subcutaneous abscess model, establishing 18 (53%) of these genes as in vivo essential. The putative gene products all had annotated biological functions, represented unrecognized or underexploited antimicrobial targets, and could be grouped into five functional categories: metabolic, two-component signaling systems, DNA/RNA synthesis and regulation, protein transport, and structural. These A. baumannii in vivo essential genes overlapped poorly with the sets of essential genes from other Gram-negative bacteria catalogued in the Database of Essential Genes (DEG), including those of Acinetobacter baylyi , a closely related species. However, this finding was not due to the absence of orthologs. None of the 18 in vivo essential genes identified in this study, or their putative gene products, were targets of FDA-approved drugs or drugs in the developmental pipeline, indicating that a significant portion of the available target space within pathogenic Gram-negative bacteria is currently neglected. IMPORTANCE The human pathogen Acinetobacter baumannii is of increasing clinical importance, and a growing proportion of isolates are multiantimicrobial-resistant, pan-antimicrobial-resistant, or extremely resistant strains. This scenario is reflective of the general problem of a critical lack of antimicrobials effective against antimicrobial-resistant Gram-negative bacteria, such as Pseudomonas aeruginosa , Klebsiella pneumoniae , Enterobacter sp., and Escherichia coli . This study identified a set of A. baumannii genes that are essential for growth and survival during infection and demonstrated the importance of using clinically relevant media and in vivo validation while screening for essential genes for the purpose of developing new antimicrobials. Furthermore, it established that if a gene is absent from the Database of Essential Genes, it should not be excluded as a potential antimicrobial target. Lastly, a new set of high-value potential antimicrobial targets for pathogenic Gram-negative bacteria has been identified.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3