A Hypoxia-Induced Positive Feedback Loop Promotes Hypoxia-Inducible Factor 1α Stability through miR-210 Suppression of Glycerol-3-Phosphate Dehydrogenase 1-Like

Author:

Kelly Timothy J.123,Souza Amanda L.4,Clish Clary B.4,Puigserver Pere12

Affiliation:

1. Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115

2. Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115

3. Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

4. Metabolite Profiling Initiative, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142

Abstract

ABSTRACT Oxygen-dependent regulation of the transcription factor HIF-1α relies on a family of prolyl hydroxylases (PHDs) that hydroxylate hypoxia-inducible factor 1α (HIF-1α) protein at two prolines during normal oxygen conditions, resulting in degradation by the proteasome. During low-oxygen conditions, these prolines are no longer hydroxylated and HIF-1α degradation is blocked. Hypoxia-induced miRNA-210 (miR-210) is a direct transcriptional target of HIF-1α, but its complete role and targets during hypoxia are not well understood. Here, we identify the enzyme glycerol-3-phosphate dehydrogenase 1-like (GPD1L) as a novel regulator of HIF-1α stability and a direct target of miR-210. Expression of miR-210 results in stabilization of HIF-1α due to decreased levels of GPD1L resulting in an increase in HIF-1α target genes. Altering GPD1L levels by overexpression or knockdown results in a decrease or increase in HIF-1α stability, respectively. GPD1L-mediated decreases in HIF-1α stability can be reversed by pharmacological inhibition of the proteasome or PHD activity. When rescued from degradation by proteasome inhibition, elevated amounts of GPD1L cause hyperhydroxylation of HIF-1α, suggesting increases in PHD activity. Importantly, expression of GPD1L attenuates the hypoxic response, preventing complete HIF-1α induction. We propose a model in which hypoxia-induced miR-210 represses GPD1L, contributing to suppression of PHD activity, and increases of HIF-1α protein levels.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3