Effects of Lipopolysaccharide and Mannheimia haemolytica Leukotoxin on Bovine Lung Microvascular Endothelial Cells and Alveolar Epithelial Cells

Author:

McClenahan David1,Hellenbrand Katrina1,Atapattu Dhammika1,Aulik Nicole2,Carlton David3,Kapur Arvinder3,Czuprynski Charles1

Affiliation:

1. Department of Pathobiological Sciences, School of Veterinary Medicine

2. Department of Microbiology, School of Medicine

3. Department of Pediatrics, School of Medicine, University of Wisconsin—Madison, Madison, Wisconsin

Abstract

ABSTRACT Bovine respiratory disease resulting from infection with Mannheimia haemolytica commonly results in extensive vascular leakage into the alveoli. M. haemolytica produces two substances, lipopolysaccharide (LPS) and leukotoxin (LKT), that are known to be important in inducing some of the pathological changes. In the present study, we examined bovine pulmonary epithelial (BPE) cell and bovine lung microvascular endothelial cell monolayer permeability, as measured by trans-well endothelial and epithelial cell electrical resistance (TEER), after incubation with LPS, LKT, or LPS-activated neutrophils. Endothelial cell monolayers exposed to LPS exhibited significant decreases in TEER that corresponded with increased levels of proinflammatory cytokines, apoptosis, and morphological changes. In contrast, BPE cells exposed to LPS increased the levels of production of inflammatory cytokines but displayed no changes in TEER, apoptosis, or visible morphological changes. Both cell types appeared to express relatively equal levels of the LPS ligand Toll-like receptor 4. However, TEER in BPE cell monolayers was decreased when the cells were incubated with LPS-activated neutrophils. Although the incubation of BPE cells with LKT decreased TEER, this was not reduced by the incubation of LKT with a neutralizing antibody and was reversed when LKT was preincubated with the LPS-neutralizing compound polymyxin B. Because BPE cells did not express the LKT receptor CD11a/CD18, we infer that contaminating LPS was responsible for the decreased TEER. In conclusion, LPS triggered changes in endothelial cells that would be consistent with vascular leakage, but neither LPS nor LKT caused similar changes in epithelial cells, unless neutrophils were also present.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3