Human OTUD6B positively regulates type I IFN antiviral innate immune responses by deubiquitinating and stabilizing IRF3

Author:

Wang Jian1,Zheng Hui1ORCID,Dong Chunsheng1,Xiong Sidong1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University , Suzhou, Jiangsu, China

Abstract

ABSTRACT Elaborate regulation of innate immunity is necessary for the host to effectively respond to invading pathogens. As an important component of antiviral immunity transcription factors, the stability and activity of interferon (IFN) regulatory factor 3 (IRF3) are tightly controlled via multiple post-translational modifications. Here, we identified a human ovarian tumor domain-containing deubiquitinase OTUD6B as a positive regulator of IRF3 that facilitates type I IFN innate antiviral immune signaling. Mechanically, we found that OTUD6B interacts with IRF3 and directly hydrolyzes both the lysine 11 (K11)- and the lysine 33 (K33)-linked polyubiquitin chain, but only K33-linked polyubiquitin at Lys315 of IRF3 is responsible for IRF3 proteasome degradation. Notably, OTUD6B enhanced cellular antiviral responses in vivo , as evidenced by mice that overexpressed human OTUD6B were more resistant to RNA virus infection and had reduced viral load and morbidity. These findings revealed a previously unknown role for OTUD6B in the regulation of innate antiviral immunity and may provide a potential target for enhancing host antiviral defense. IMPORTANCE Interferon (IFN) regulatory factor (IRF3) is one of the key factors for type I IFN transcription. To sophisticatedly regulate type I IFN antiviral immune response, IRF3 activity is closely controlled by a variety of post-translational modifications. However, the regulatory mechanisms are still not fully elucidated. In the present study, we found that human deubiquitinase OTUD6B positively regulates IRF3-mediated antiviral immune response. OTUD6B can stabilize the IRF3 protein level via hydrolyzing (Lys33)-linked polyubiquitin at Lys315. More importantly, mice with OTUD6B overexpression exhibited more resistance to RNA virus infection. Thus, unlike the previous report that zebrafish OTUD6B negatively regulates the antiviral response by suppressing K63-linked ubiquitination of IRF3 and IRF7, we demonstrate that human OTUD6B actually enhances type I IFN response and has the potential for antiviral therapy.

Funder

MOST | National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3