Complete DNA Sequence Analyses of the First Two Varicella-Zoster Virus Glycoprotein E (D150N) Mutant Viruses Found in North America: Evolution of Genotypes with an Accelerated Cell Spread Phenotype

Author:

Grose Charles1,Tyler Shaun2,Peters Geoff2,Hiebert Joanne2,Stephens Gwen M.3,Ruyechan William T.4,Jackson Wallen1,Storlie Johnathan1,Tipples Graham A.2

Affiliation:

1. Department of Pediatrics, University of Iowa, Iowa City, Iowa

2. National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Winnipeg, Manitoba

3. University of British Columbia Virology and Reference Laboratory, St. Pauls Hospital, Vancouver, British Columbia, Canada

4. Department of Microbiology, University at Buffalo, Buffalo, New York

Abstract

ABSTRACT Varicella-zoster virus (VZV) is considered to be one of the most genetically stable of all the herpesviruses. Yet two VZV strains with a D150N missense mutation within the gE glycoprotein were isolated in North America in 1998 and 2002. The mutant strains have an accelerated cell spread phenotype, which distinguishes them from all wild-type and laboratory viruses. Since the VZV genome contains 70 additional open reading frames (ORFs), the possibility existed that the phenotypic change was actually due to an as-yet-undiscovered mutation or deletion elsewhere in the genome. To exclude this hypothesis, the entire genomes of the two mutant viruses were sequenced and found to contain 124,883 (VZV-MSP) and 125,459 (VZV-BC) nucleotides. Coding single-nucleotide polymorphisms (SNPs) were identified in 14 ORFs. One missense mutation was discovered in gH, but none was found in gB, gI, gL, or gK. There were no coding SNPs in the major regulatory protein ORF 62. One polymorphism was discovered which could never have been anticipated based on current knowledge of herpesvirus genomics, namely, the origins of replication differed from those in the prototype strain but not in a manner expected to affect cell spread. When the two complete mutant VZV sequences were surveyed in their entirety, the most reasonable conclusion was that the increased cell spread phenotype was dependent substantially or solely on the single D150N polymorphism in glycoprotein gE. The genomic results also expanded the evolutionary database by identifying which VZV ORFs were more likely to mutate over time.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3