Evidence that Receptor Destruction by the Sendai Virus Hemagglutinin-Neuraminidase Protein Is Responsible for Homologous Interference

Author:

Goto Hideo1,Ohta Keisuke1,Matsumoto Yusuke1,Yumine Natsuko1,Nishio Machiko1

Affiliation:

1. Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan

Abstract

ABSTRACT Receptor destruction has been considered one of the mechanisms of homologous Sendai virus (SeV) interference. However, direct evidence of receptor destruction upon virus infection and its relevance to interference is missing. To investigate a precise mechanism of homologous interference, we established SeV persistently infected cells. The persistently infected cells inhibited superinfection by homologous SeV but supported replication of human parainfluenza virus 2 (hPIV2) and influenza A virus (IAV). We confirmed that SeV particles could not attach to or penetrate the infected cells and that the hemagglutinin-neuraminidase (HN) protein of SeV was involved in the interference. Lectin blot assays showed that the α2,3-linked sialic acids were specifically reduced in the SeV-infected cells, but the level of α2,6-linked sialic acids had not changed. As infection with IAV removed both α2,3- and α2,6-linked sialic acids, especially α2,3-linked sialic acids, IAV-infected cells inhibited superinfection of SeV. These results provide concrete evidence that destruction of the specific SeV receptor, α2,3-linked sialic acids, is relevant to homologous interference by SeV. IMPORTANCE Viral interference is a classically observed phenomenon, but the precise mechanism is not clear. Using SeV interference, we provide concrete evidence that reduction of the α2,3-linked sialic acid receptor by the HN of SeV is closely related with viral interference. Since SeV infection resulted in decrease of only α2,3-linked sialic acids, IAV, which also utilized α2,6-linked sialic acids to initiate infection, superinfected the SeV-infected cells. In contrast, SeV could not superinfect the IAV-infected cells because both α2,3- and α2,6-linked sialic acids were removed. These results indicate that receptor destruction critically contributes to viral interference.

Funder

Japan Society for the Promotion of Science

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3