Homologous Interference by Incomplete Sendai Virus Particles: Changes in Virus-Specific Ribonucleic Acid Synthesis

Author:

Portner A.1,Kingsbury D. W.1

Affiliation:

1. Laboratories of Virology and Immunology, St. Jude Children's Research Hospital, and University of Tennessee Medical Units, Memphis, Tennessee 38101

Abstract

Incomplete Sendai virus particles (I particles) interfered with the replication of several strains of infectious Sendai virions (standard virus) but not with the replication of Newcastle disease virus, mumps virus, or Sindbis virus. I particles did not induce interferon, and ultraviolet irradiation of I particles abolished their ability to interfere. Protein synthesis was not necessary to establish interference. The degree of interference depended on the interval between exposure of cells to the I particles and challenge by standard virus, and this was reflected in the degree of inhibition of virus-specific ribonucleic acid (RNA) synthesis in infected cells. The most dramatic change was decreased accumulation of 50 S virus-specific RNA in infected cells. RNA species sedimenting slower than 50 S were not as markedly reduced in total amount, but hybridization experiments showed that a substantial portion of these slowly sedimenting RNA species were plus strands, presumably representing replicas of the RNA species in I particles. When I particles in insufficient numbers to interfere were added to cells as late as 8 hr after standard virus, there were no obvious changes in virus-specific RNA species in the cells; however, significant amounts of 19 and 25 S RNA species, representing progeny of the I particles, appeared in the culture medium. It was concluded that interference was an intracellular event affecting an early step in virus replication. Competition by I particles for cell sites or substrates needed by standard virus seemed a less likely mechanism of interference than competition for enzymes specified by standard virus.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3