Liver-Specific Deletion of SRSF2 Caused Acute Liver Failure and Early Death in Mice

Author:

Cheng Yuanming1,Luo Chunling1,Wu Wenwu1,Xie Zhiqin1,Fu Xiangdong2,Feng Ying1

Affiliation:

1. Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China

2. Department of Cell and Molecular Medicine, University of California at San Diego, San Diego, California, USA

Abstract

ABSTRACT The liver performs a variety of unique functions critical for metabolic homeostasis. Here, we show that mice lacking the splicing factor SRSF2 but not SRSF1 in hepatocytes have severe liver pathology and biochemical abnormalities. Histological analyses revealed generalized hepatitis with the presence of ballooned hepatocytes and evidence of fibrosis. Molecular analysis demonstrated that SRSF2 governs splicing of multiple genes involved in the stress-induced cell death pathway in the liver. More importantly, SRSF2 also functions as a potent transcription activator, required for efficient expression of transcription factors mainly responsible for energy homeostasis and bile acid metabolism in the liver. Consistent with the effects of SRSF2 in gene regulation, accumulation of total cholesterol and bile acids was prominently observed in the mutant liver, followed by enhanced generation of reactive oxygen species and increased endoplasmic reticulum stress, as revealed by biochemical and ultrastructural analyses. Taking these observations together, inactivation of SRSF2 in liver caused dysregulated splicing events and hepatic metabolic disorders, which trigger endoplasmic reticulum stress, oxidative stress, and finally liver failure.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3