Efflux-Mediated Antibiotic Resistance in Acinetobacter spp

Author:

Coyne Sébastien1,Courvalin Patrice1,Périchon Bruno1

Affiliation:

1. Institut Pasteur, Unité des Agents Antibactériens, 75724 Paris Cedex 15, France

Abstract

ABSTRACT Among Acinetobacter spp., A. baumannii is the most frequently implicated in nosocomial infections, in particular in intensive care units. It was initially thought that multidrug resistance (MDR) in this species was due mainly to horizontal acquisition of resistance genes. However, it has recently become obvious that increased expression of chromosomal genes for efflux systems plays a major role in MDR. Among the five superfamilies of pumps, resistance-nodulation-division (RND) systems are the most prevalent in multiply resistant A. baumannii . RND pumps typically exhibit a wide substrate range that can include antibiotics, dyes, biocides, detergents, and antiseptics. Overexpression of AdeABC, secondary to mutations in the adeRS genes encoding a two-component regulatory system, constitutes a major mechanism of multiresistance in A. baumannii . AdeIJK, intrinsic to this species, is responsible for natural resistance, but since overexpression above a certain threshold is toxic for the host, its contribution to acquired resistance is minimal. The recently described AdeFGH, probably regulated by a LysR-type transcriptional regulator, also confers multidrug resistance when overexpressed. Non-RND efflux systems, such as CraA, AmvA, AbeM, and AbeS, have also been characterized for A. baumannii , as have AdeXYZ and AdeDE for other Acinetobacter spp. Finally, acquired narrow-spectrum efflux pumps, such as the major facilitator superfamily (MFS) members TetA, TetB, CmlA, and FloR and the small multidrug resistance (SMR) member QacE in Acinetobacter spp., have been detected and are mainly encoded by mobile genetic elements.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3