The yeast GAL4 protein transactivates the polyomavirus origin of DNA replication in mouse cells

Author:

Baru M1,Shlissel M1,Manor H1

Affiliation:

1. Department of Biology, Technion-Israel Institute of Technology, Haifa.

Abstract

We have replaced the polyomavirus (Py) enhancer, which is an essential component of the Py origin of DNA replication (ori), with five repeats of a 17-bp oligonucleotide including the yeast GAL4 upstream activating sequence (5xGAL4 sites). Plasmids containing this modified Py ori, designated test plasmids, and plasmids encoding either the GAL4 transcriptional activator protein or various derivatives of this protein were cotransfected into mouse cells which constitutively synthesize a temperature-sensitive Py large tumor antigen (T-Ag). Replication of the test plasmids was monitored by Southern blot determinations of the amounts of plasmid DNA that became resistant to cleavage by the enzyme DpnI. These studies showed that in the presence of a functional T-Ag, the GAL4 protein, and hybrid proteins including the GAL4 DNA-binding domain and the activating domain of the adenovirus E1a or herpesvirus VP16 protein transactivated the modified Py ori. A truncated protein including just the GAL4 DNA-binding domain was inactive in these assays. The authentic GAL4 protein was found to be a more efficient replication transactivator than the hybrid proteins. In contrast, chloramphenicol acetyltransferase assays showed that the hybrid proteins were more efficient transcriptional activators than the GAL4 protein. The extent of the GAL4-dependent replication of a plasmid in which the Py early promoter was deleted was 55% lower than that of a plasmid including the promoter. However, the extents of replication of plasmids including two tandem repeats of the remaining Py origin core and 5xGAL4 sites or two origin cores flanking a single cluster of 5xGAL4 sites were 4.8- and 1.6-fold higher than that of the plasmid including a single copy of each element. The replication of a plasmid including two clusters of 5xGAL4 sites flanking a single origin core was below the limit of detection of our assays. These results indicate that the GAL4 and hybrid transactivators do not activate the Py ori by virtue of their interactions with transcription factors that bind promoter elements. Rather, it appears that these activator proteins may interact with the replication initiation complexes, thereby facilitating or inhibiting the initiation of replication.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference50 articles.

1. Baru M. Unpublished data.

2. Requirements for species-specific papovavirus DNA replication;Bennet E. R.;J. Virol.,1989

3. A yeast silencer contains sequences that can promote autonomous plasmid replication and transcriptional activation;Brand A. H.;Cell,1988

4. Functional analysis of the individual enhancer core sequences of polyomavirus: cell-specific uncoupling of DNA replication from transcription;Campbell B. A.;Mol. Cell. Biol.,1988

5. Structure and function of the promoter-enhancer region of polyoma and SV40;Cereghini S.;Cold Spring Harbor Symp. Quant. Biol.,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3