Initiation of polyoma virus origin-dependent DNA replication through STAT5 activation by human granulocyte-macrophage colony-stimulating factor

Author:

Watanabe Sumiko1,Zeng Rong1,Aoki Yutaka1,Itoh Tohru1,Arai Ken-ichi1

Affiliation:

1. From the Department of Molecular and Developmental Biology, Institute of Medical Science, Core Research for Evolutional Science and Technology, Tokyo, Japan.

Abstract

Several lines of evidence indicate that transcriptional activation is coupled with DNA replication initiation, but the nature of initiation of DNA replication in mammalian cells is unclear. Polyoma virus replicon is an excellent system to analyze the initiation of DNA replication in murine cells because its replication requires an enhancer, and all components of replication machinery, except for DNA helicase large T antigen, are supplied by host cells. This system was used to examine the role of signal transducer and activator of transcription (STAT5) in replication initiation of polyoma replicon in the mouse lymphoid cell line BA/F3. The plasmid with tandem repeats of consensus STAT5 binding sites followed by polyoma replication origin was replicated by stimulation with human granulocyte-macrophage colony-stimulating factor (hGM-CSF) in the presence of polyoma large T antigen in BA/F3 cells. Mutation analysis of the hGM-CSF receptor β subunit revealed that only the box1 region is essential, and the C-terminal tyrosine residues are dispensable for the activity. Addition of the tyrosine kinase inhibitor genistein suppressed this replication without affecting transcriptional activation of STAT5. Because deletion analysis of STAT5 indicates the importance of the C-terminal transcriptional activation domain of STAT5 for the initiation of replication, the role of this region in the activation of replication was examined with a GAL4–STAT5 fusion protein. GAL4–STAT5 activated replication of the plasmid containing tandem repeats of GAL4 binding sites and polyoma replication origin in BA/F3 cells. Mutation analysis of GAL4–STAT5 indicated that multiple serine residues coordinately have a role in activating replication. This is the first direct evidence indicating the potential involvement of STAT5 in replication.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3