Evaluation of Two Protein Extraction Protocols Based on Freezing and Mechanical Disruption for Identifying Nontuberculous Mycobacteria by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry from Liquid and Solid Cultures

Author:

Rodriguez-Temporal David12ORCID,Perez-Risco Daniel12ORCID,Struzka Eduardo A.1,Mas Mireia1,Alcaide Fernando12ORCID

Affiliation:

1. Department of Microbiology, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Spain

2. Department of Pathology and Experimental Therapy, Universitat de Barcelona, Hospitalet de Llobregat, Spain

Abstract

ABSTRACT Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has proved to be a useful diagnostic method for identifying conventional bacteria. In the case of mycobacteria, a good protein extraction protocol is essential in order to obtain reliable identification results. To date, no such protocol has been definitively established. The aim of this study was to compare the manufacturer's recommended protein extraction protocol (protocol A) with two novel protocols (protocols B and C), which apply different freezing temperatures and mechanical disruption times using an automatic tissue homogenizer. A total of 302 clinical isolates, comprising 41 nontuberculous mycobacteria (NTM) species, were grown in parallel on solid and liquid media and analyzed: 174 isolates were slow-growing mycobacteria (SGM) and 128 isolates were rapid-growing mycobacteria (RGM). Overall, MALDI-TOF MS identified a higher number of NTM isolates from solid than from liquid media, especially with protocol C (83.4 and 68.2%, respectively; P < 0.05). From solid media, this protein extraction method identified 57.9 and 3.9% more isolates than protocols A ( P < 0.001) and B ( P < 0.05), respectively. In the case of liquid media, protocol C identified 49.7 and 6.3% more isolates than protocols A and B, respectively ( P < 0.001). With regard to the growth rate, MALDI-TOF MS identified more RGM isolates than SGM isolates in all of the protocols studied. In conclusion, the application of freezing and automatic tissue homogenizer improved protein extraction of NTM and boosted identification rates. Consequently, MALDI-TOF MS, which is a cheap and simple method, could be a helpful tool for identifying NTM species in clinical laboratories.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3