The Transcriptional Activity of Sox9 in Chondrocytes Is Regulated by RhoA Signaling and Actin Polymerization

Author:

Kumar Deepak1,Lassar Andrew B.1

Affiliation:

1. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C, Room 303, 240 Longwood Avenue, Boston, Massachusetts 02115

Abstract

ABSTRACT In this study, we demonstrate that dedifferentiation of round primary chondrocytes into a fibroblast morphology correlates with a profound induction of RhoA protein and stress fibers. Culture of dedifferentiated chondrocytes in alginate gel induces a precipitous loss of RhoA protein and a loss of stress fibers concomitant with the reexpression of the chondrocyte differentiation program. We have found that chondrogenesis in limb bud micromass cultures similarly entails a loss of RhoA protein and that expression of dominant negative RhoA in such cultures can markedly enhance chondrogenesis. Consistent with these results, expression of the Rho antagonist C3 transferase can restore chondrocyte gene expression in dedifferentiated chondrocytes grown on plastic. Transfection of cells with agents that block actin polymerization enhance the ability of either exogenous Sox9 or a Gal4 DBD-Sox9 fusion protein to activate gene expression. Interestingly, the enhancement of Sox9 function by actin depolymerization requires both protein kinase A (PKA) activity and a PKA phosphorylation site in Sox9 (S181) that is known to enhance Sox9 transcriptional activity. Lastly, we demonstrate that RhoA-mediated modulation of actin polymerization regulates the ability of Sox9 to both activate chondrocyte-specific markers and maintain its own expression in chondrocytes via a positive feedback loop.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3