Biofabrication of Heterogeneous, Multi‐Layered, and Human‐Scale Tissue Transplants Using Eluting Mold Casting

Author:

Tosoratti Enrico1ORCID,Rütsche Dominic1ORCID,Asadikorayem Maryam1ORCID,Ponta Simone1ORCID,Fisch Philipp1ORCID,Flégeau Killian1,Linder Thomas2ORCID,Guillon Pierre1,Zenobi‐Wong Marcy1ORCID

Affiliation:

1. Institute for Biomechanics ETH Zurich Otto‐Stern‐Weg 7 Zurich 8093 Switzerland

2. HNO Luzerner Kantonsspital Spitalstrasse Luzern 6000 Switzerland

Abstract

AbstractThe creation of multi‐tissue auricular transplants for the treatment of microtia is a challenge due to the complex and layered structure of this anatomical tissue. A novel casting technique for the 3D biofabrication of heterogeneous, multi‐layered, and human‐scale tissue transplants using eluting agarose molds is presented. The molds are generated by casting agarose into custom 3D‐printed containers, termed metamolds, optimized to facilitate the hydrogel casting process based on geometric and topological constraints. Casting yields high resolution (50 µm) and allows for subsequent casting of further hydrogel layers on the transplant. Multi‐layered auricular constructs are fabricated on a cartilage core consisting of a hyaluronic acid‐alginate double network and an adjacent gelatin‐based dermal layer. Bonding between adjacent layers is achieved by orthogonal physical and enzymatic crosslinking of residual functional groups between each layer. Material composition and culture duration are optimized for each layer allowing for maturation into cartilaginous and pre‐vascularized dermal tissues. To demonstrate the scalability of this technique for the biofabrication of human‐sized transplants, bi‐layered human‐sized ears are cast. Overall, this novel casting technique offers a promising approach for the fabrication of complex tissue grafts, overcoming the limitations of other traditional biofabrication methods.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3