Three‐dimensional bioprinting biphasic multicellular living scaffold facilitates osteochondral defect regeneration

Author:

Yu Xingge12345,Gholipourmalekabadi Mazaher67,Wang Xudong1,Yuan Changyong89,Lin Kaili1ORCID

Affiliation:

1. Department of Oral and Cranio‐Maxillofacial Science, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China

2. College of Stomatology Shanghai Jiao Tong University Shanghai China

3. National Center for Stomatology Shanghai China

4. National Clinical Research Center for Oral Diseases Shanghai China

5. Shanghai Key Laboratory of Stomatology Shanghai China

6. Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran

7. Department of Medical Biotechnology, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran

8. Affiliated Stomatological Hospital of Xuzhou Medical University Xuzhou Jiangsu China

9. School of Stomatology Xuzhou Medical University Xuzhou Jiangsu China

Abstract

AbstractDue to tissue lineage variances and the anisotropic physiological characteristics, regenerating complex osteochondral tissues (cartilage and subchondral bone) remains a great challenge, which is primarily due to the distinct requirements for cartilage and subchondral bone regeneration. For cartilage regeneration, a significant amount of newly generated chondrocytes is required while maintaining their phenotype. Conversely, bone regeneration necessitates inducing stem cells to differentiate into osteoblasts. Additionally, the construction of the osteochondral interface is crucial. In this study, we fabricated a biphasic multicellular bioprinted scaffold mimicking natural osteochondral tissue employing three‐dimensional (3D) bioprinting technology. Briefly, gelatin‐methacryloyl (GelMA) loaded with articular chondrocytes and bone marrow mesenchymal stem cells (ACs/BMSCs), serving as the cartilage layer, preserved the phenotype of ACs and promoted the differentiation of BMSCs into chondrocytes through the interaction between ACs and BMSCs, thereby facilitating cartilage regeneration. GelMA/strontium‐substituted xonotlite (Sr‐CSH) loaded with BMSCs, serving as the subchondral bone layer, regulated the differentiation of BMSCs into osteoblasts and enhanced the secretion of cartilage matrix by ACs in the cartilage layer through the slow release of bioactive ions from Sr‐CSH. Additionally, GelMA, serving as the matrix material, contributed to the reconstruction of the osteochondral interface. Ultimately, this biphasic multicellular bioprinted scaffold demonstrated satisfactory simultaneous regeneration of osteochondral defects. In this study, a promising strategy for the application of 3D bioprinting technology in complex tissue regeneration was proposed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3