Infectivity and Replication Capacity of Drug-Resistant Human Immunodeficiency Virus Type 1 Variants Isolated during Primary Infection

Author:

Simon Viviana1,Padte Neal1,Murray Deya1,Vanderhoeven Jeroen1,Wrin Terri2,Parkin Neil2,Di Mascio Michele3,Markowitz Martin1

Affiliation:

1. Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York

2. ViroLogic Inc., South San Francisco, California

3. Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Abstract

ABSTRACT It is believed that replication capacity is an important determinant of human immunodeficiency virus type 1 (HIV-1) pathogenicity and transmissibility. To explore this, we conducted a comprehensive analysis of the replication properties of nine drug-resistant and nine drug-susceptible viral isolates derived from patients with primary HIV-1 infection. Viral isolates were tested for single-cycle infectivity in the GHOST cell line. The infectivity of isolates carrying resistance-associated mutations was significantly higher than that of drug-susceptible isolates. Additionally, the growth kinetics of these isolates were determined in CD4 + T lymphocytes. Drug-resistant isolates replicated as well as drug-susceptible viruses. Insertion of the resistance-conferring regions into an NL4-3-based molecular background resulted in chimeras that displayed a modest but significant reduction in replication capacity compared to the drug-susceptible chimeric viruses. Of note, two multidrug-resistant isolates and one protease inhibitor-resistant isolate displayed higher rates of infectivity and growth kinetics than the other drug-resistant or drug-susceptible isolates. These distinct replicative features, however, were not seen in the corresponding chimeras, indicating that changes within the C-terminal region of Gag as well as within the protease and reverse transcriptase genes contribute to but are not sufficient for the level of compensatory adaptation observed. These findings suggest that some drug-resistant viruses isolated during primary infection possess unique adaptive changes that allow for both high viral replication capacity and resistance to one or more classes of antiretroviral drugs. Further studies are needed to elucidate the precise regions that are essential for these characteristics.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3