Rapid Differentiation of Influenza A Virus Subtypes and Genetic Screening for Virus Variants by High-Resolution Melting Analysis

Author:

Lin Jih-Hui1,Tseng Ching-Ping23,Chen Yen-Ju4,Lin Chy-Yung5,Chang Shy-Shin67,Wu Ho-Sheng1,Cheng Ju-Chien4

Affiliation:

1. Center for Disease Control and Prevention, Taipei, Taiwan, Republic of China

2. Graduate Institute of Medical Biotechnology

3. Laboratory of Molecular Diagnostics, Department of Clinical Pathology

4. Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan 404, Republic of China

5. Department of Laboratory Medicine, Changhua Christian Medical Center, Changhua, Taiwan 500, Republic of China

6. Clinical Medical Science, Chang Gung University, Taoyuan, Taiwan 333, Republic of China

7. Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan 333, Republic of China

Abstract

ABSTRACT We assessed the use of high-resolution melting (HRM) analysis for the rapid identification of influenza A virus subtypes and the detection of newly emerging virus variants. The viral matrix gene was amplified by LightCycler real-time reverse transcription-PCR (RT-PCR) in the presence of the LCGreen I fluorescent dye. Upon optimization of the assay conditions, all the major influenza A virus subtypes, including H1N1, H3N2, H5N1, H7N3, and H9N2, were amplifiable by this method and had a PCR product length of 179 bp. Real-time RT-PCR of in vitro-transcribed H3N2 RNA revealed a standard curve for quantification with a linear range (correlation coefficient = 0.9935) across at least 8 log units of RNA concentrations and a detection limit of 10 3 copies of viral RNA. We performed HRM analysis of the PCR products with the HR-1 instrument and used the melting profiles as molecular fingerprints for virus subtyping. The virus subtypes were identified from the high-resolution derivative plot obtained by heteroduplex formation between the PCR products of the viral isolates tested and those of the reference viral isolates. The melting profiles were consistent with minimal interassay variability. Hence, an HRM database and a working protocol were established for the identification of these five influenza A virus subtypes. When this protocol was used to test 21 clinical influenza A virus isolates, the results were comparable to those obtained by RT-PCR with hemagglutinin-specific primer sets. Sequence variants of the clinical isolates ( n = 4) were also revealed by our HRM analytical scheme. This assay requires no multiplexing or hybridization probes and provides a new approach for influenza A virus subtyping and genetic screening of virus variants in a clinical virology laboratory.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3