Rapid Detection and Identification of Clinically Important Bacteria by High-Resolution Melting Analysis after Broad-Range Ribosomal RNA Real-Time PCR

Author:

Cheng Ju-Chien1,Huang Chien-Ling2,Lin Chung-Ching3,Chen Chi-Ching4,Chang Yi-Chih1,Chang Shy-Shin256,Tseng Ching-Ping236

Affiliation:

1. School of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, Republic of China

2. Graduate Institutes of Basic Medical Sciences,

3. Medical Biotechnology, and Clinical Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan, Republic of China

4. Department of Pathology and Laboratory Medicine, Li Shin Hospital, Tao-Yuan, Taiwan, Republic of China

5. Department of Nursing, Chang Gung Institute of Technology, Tao-Yuan, Taiwan, Republic of China

6. Department of Emergency Medicine and Laboratory of Molecular Diagnostics, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, Republic of China

Abstract

Abstract Background: Broad-range PCR provides valuable information for detecting bacterial infections. This study assesses the combined use of broad-range real-time PCR and high-resolution melting analysis for rapid detection and identification of clinically important bacteria. Methods: We subjected 46 bacterial culture colonies representing 25 clinically important bacterial species to LightCycler real-time PCR amplification of the 16S rRNA gene in the presence of LCGreen I fluorescent dye. We performed high-resolution melting analysis of the PCR products with the HR-1 instrument and used melting profiles as molecular fingerprints for bacterial species identification. We validated this method via assessment of 54 consecutive bacteria culture colonies obtained from a clinical microbiology laboratory. Results: The 16S rRNA gene of all 25 bacterial species was amplifiable by this method, with PCR product lengths of 216 or 217 bp. Of the 25 bacterial species, we identified 11 via a 1-step post-PCR high-resolution melting analysis. The remaining bacterial species were identified via the high-resolution melting plots obtained by heteroduplex formation between the PCR products of the tested and reference bacterial species or by a 2nd real-time PCR targeting a different region of the 16S rRNA gene. A high-resolution melting database and a working protocol were established for identifying these 25 bacterial species. In the validation assay, a 94% accuracy rate was achieved when the bacterial species were in the high-resolution melting database. Conclusions: This assay requires no multiplexing or hybridization probes and provides a new approach for bacterial species identification in a molecular diagnostic laboratory.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3