Affiliation:
1. School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
Abstract
ABSTRACT
Like other Nedd4 ligases,
Saccharomyces cerevisiae
E3 Rsp5p utilizes adaptor proteins to interact with some substrates. Previous studies have indentified Bul1p and Bul2p as adaptor proteins that facilitate the ligase-substrate interaction. Here, we show the identification of a third member of the Bul family, Bul3p, the product of two adjacent open reading frames separated by a stop codon that undergoes readthrough translation. Combinatorial analysis of
BUL
gene deletions reveals that they regulate some, but not all, of the cellular pathways known to involve Rsp5p. Surprisingly, we find that Bul proteins can act antagonistically to regulate the same ubiquitin-dependent process, and the nature of this antagonistic activity varies between different substrates. We further show, using
in vitro
ubiquitination assays, that the Bul proteins have different specificities for WW domains and that the two forms of Bul3p interact differently with Rsp5p, potentially leading to alternate functional outcomes. These data introduce a new level of complexity into the regulatory interactions that take place between Rsp5p and its adaptors and substrates and suggest a more critical role for the Bul family of proteins in controlling adaptor-mediated ubiquitination.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献