Affiliation:
1. UMR1290 BIOGER-CPP, INRA, Route de St-Cyr, 78026 Versailles, France
Abstract
ABSTRACT
A previous transcriptomic analysis of 3,032 fungal genes identified the
Botrytis cinerea PIE3
(Bc
PIE3
) gene to be up-regulated early in planta (A. Gioti, A. Simon, P. Le Pêcheur, C. Giraud, J. M. Pradier, M. Viaud, and C. Levis, J. Mol. Biol. 358:372-386, 2006). In the present study, Bc
PIE3
was disrupted in order to determine its implication in pathogenicity. BcPIE3 was shown to be a virulence factor, since the ΔBcPIE3 mutant was blocked during the colonization of tomato and bean leaves, giving lesions reduced in size by at least 74%. Within the emopamil binding domain (EBD), BcPIE3 shows significant structural similarities to mammalian emopamil binding proteins (EBPs). Mammalian EBPs function as sterol isomerases, but an analysis of the sterol content and the results of growth inhibition experiments with the ΔBcPIE3 strain indicated that BcPIE3 is dispensable for ergosterol biosynthesis. The systematic identification of EBD-containing proteins included in public databases showed that these proteins constitute a protein superfamily present only in eukaryotes. Phylogenetic analysis showed that the ancestral EBD-encoding gene was duplicated in the common ancestor of animals and fungi after the split from plants. Finally, we present evidence that the EBP phylogenetic clade of this superfamily has further expanded exclusively in euascomycetes, especially in
B. cinerea
, which contains three copies of the
EBP
gene.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献