Characterizing co-expression networks underpinning maize stalk rot virulence in Fusarium verticillioides through computational subnetwork module analyses

Author:

Kim Man S.,Zhang Huan,Yan Huijuan,Yoon Byung-Jun,Shim Won Bo

Abstract

AbstractFusarium verticillioides is recognized as an important stalk rot pathogen of maize worldwide, but our knowledge of genetic mechanisms underpinning this pathosystem is limited. Previously, we identified a striatin-like protein Fsr1 that plays an important role in stalk rot. To further characterize transcriptome networks downstream of Fsr1, we performed next-generation sequencing (NGS) to investigate relative read abundance and also to infer co-expression networks utilizing the preprocessed expression data through partial correlation. We used a probabilistic pathway activity inference strategy to identify functional subnetwork modules likely involved in virulence. Each subnetwork modules consisted of multiple correlated genes with coordinated expression patterns, but the collective activation levels were significantly different in F. verticillioides wild type versus the mutant. We also identified putative hub genes from predicted subnetworks for functional validation and network robustness studies through mutagenesis, virulence and qPCR studies. Our results suggest that these genes are important virulence genes that regulate the expression of closely correlated genes, demonstrating that these are important hubs of their respective subnetworks. Lastly, we used key F. verticillioides virulence genes to computationally predict a subnetwork of maize genes that potentially respond to fungal genes by applying cointegration-correlation-expression strategy.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. Common stalk rot diseases of corn;Plant Dis,1999

2. White, D. G. Compendium of Corn Disease. 3rd edn, (APS Press, 1999).

3. The role of plant stresses in development of corn stalk rots;Plant Dis,1980

4. Factors affecting development of stalk rots of corn caused by Diplodia zeae and Gibberella zeae;Phytopathology,1957

5. FSR1 is essential for virulence and female fertility in Fusarium verticillioides and F. graminearum;Mol. Plant Microbe In.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3