Characterization of the Streptococcus mutans GS-5 fruA gene encoding exo-beta-D-fructosidase

Author:

Burne R A1,Penders J E1

Affiliation:

1. Department of Dental Research, University of Rochester Medical Center, New York 14642.

Abstract

The complete nucleotide sequence (5,010 bp) of the fructanase gene (fruA) and flanking regions of the chromosome of Streptococcus mutans GS-5 was determined. The fruA gene appears to be the sole transcript arising from a proximal promoter. The presumed precursor of the secreted FruA protein consists of 1,423 amino acids, and it has an M(r) of 158,656 and a pI of 4.82. The N terminus of FruA has characteristics in common with signal peptides of gram-positive organisms. The C terminus consists of a serine- and threonine-rich region, followed by the peptide LPDTGD, 4 charged amino acids, 21 amino acids with a strongly hydrophobic character, and a charged pentapeptide tail, which are proposed to correspond to the wall-spanning region, the LPXTGX consensus sequence, and the membrane-spanning domains of surface-associated proteins of gram-positive cocci. The FruA protein has significant homology with the Bacillus subtilis levanase (SacC), the Bacteroides fragilis levanase (ScrL), yeast invertases, and a number of other beta-fructosidases but not with fructosyltransferase, glucosyltransferases, or glucan-binding proteins of oral streptococci. Genes with homology to fruA were detected in S. mutans serotype c, e, and f strains, Streptococcus rattus, Streptococcus salivarius, and Streptococcus sanguis. A deletion derivative of FruA lacking the C-terminal 437 amino acids was still functional and could hydrolyze beta-(2,6)- and beta-(2,1)-linked sugars, but with altered preference for substrates. The data begin to define functional domains of the FruA protein and potential regulatory sites for induction, repression, growth rate control, and posttranslational localization of this multifunctional enzyme.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3