Degradation of Ciprofloxacin by Basidiomycetes and Identification of Metabolites Generated by the Brown Rot Fungus Gloeophyllum striatum

Author:

Wetzstein Heinz-Georg1,Stadler Marc2,Tichy Hans-Volker3,Dalhoff Axel2,Karl Wolfgang4

Affiliation:

1. Animal Health Research,1

2. Pharma Research,2 and

3. TÜV Energie und Systemtechnik GmbH, D-79108 Freiburg,3 Germany

4. Central Research,4 Bayer AG, D-51368 Leverkusen, and

Abstract

ABSTRACT Ciprofloxacin (CIP), a fluoroquinolone antibacterial drug, is widely used in the treatment of serious infections in humans. Its degradation by basidiomycetous fungi was studied by monitoring 14 CO 2 production from [ 14 C]CIP in liquid cultures. Sixteen species inhabiting wood, soil, humus, or animal dung produced up to 35% 14 CO 2 during 8 weeks of incubation. Despite some low rates of 14 CO 2 formation, all species tested had reduced the antibacterial activity of CIP in supernatants to between 0 and 33% after 13 weeks. Gloeophyllum striatum was used to identify the metabolites formed from CIP. After 8 weeks, mycelia had produced 17 and 10% 14 CO 2 from C-4 and the piperazinyl moiety, respectively, although more than half of CIP (applied at 10 ppm) had been transformed into metabolites already after 90 h. The structures of 11 metabolites were elucidated by high-performance liquid chromatography combined with electrospray ionization mass spectrometry and 1 H nuclear magnetic resonance spectroscopy. They fell into four categories as follows: (i) monohydroxylated congeners, (ii) dihydroxylated congeners, (iii) an isatin-type compound, proving elimination of C-2, and (iv) metabolites indicating both elimination and degradation of the piperazinyl moiety. A metabolic scheme previously described for enrofloxacin degradation could be confirmed and extended. A new type of metabolite, 6-defluoro-6-hydroxy-deethylene-CIP, provided confirmatory evidence for the proposed network of congeners. This may result from sequential hydroxylation of CIP and its congeners by hydroxyl radicals. Our findings reveal for the first time the widespread potential for CIP degradation among basidiomycetes inhabiting various environments, including agricultural soils and animal dung.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3