SULFUR TUFT AND TURKEY TAIL: Biosynthesis and Biodegradation of Organohalogens by Basidiomycetes

Author:

de Jong Ed1,Field Jim A.2

Affiliation:

1. Department of Wood Science, The University of British Columbia, #270-2357 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada;

2. Division of Industrial Microbiology, Department of Food Science, Agricultural University Wageningen, P.O. Box 8129, EV Wageningen, 6700 The Netherlands;

Abstract

▪ Abstract  Chlorinated aliphatic and aromatic compounds are generally considered to be undesirable xenobiotic pollutants. However, the higher fungi, Basidiomycetes, have a widespread capacity for organohalogen biosynthesis. Adsorbable organic halogens (AOX) and/or low-molecular-weight halogenated compounds are produced by Basidiomycetes of 68 genera from 20 different families. Most of the 81 halogenated metabolites identified from Basidiomycetes to date are chlorinated, although brominated and iodated metabolites have also been described. Two broad categories of Basidiomycete organohalogen metabolites are the halogenated aromatic compounds and the haloaliphatic compounds. Some of these organohalogen metabolites have demonstrable physiological roles as antibiotics and as metabolites involved in lignin degradation. Basidiomycetes produce large amounts of low-molecular-weight organohalogens or adsorbable organic halogens (AOX) when grown on lignocellulosic substrates. In our view, Basidiomycetes, as decomposers of forest litter, are a major source of natural organohalogens in terrestrial environments. Basidiomycetes are also potent degraders of a wide range of chlorinated pollutants, such as bleachery effluent from kraft mills and pentachlorophenol, polychlorinated dioxins, and polychlorinated biphenyls. The extracellular, lignin-degrading enzymes of the Basidiomycetes are involved in the oxidative degradation of chlorophenols and dioxin and can cause reductive dechlorination of halomethanes. There is no clear-cut separation between “polluters” and “clean-uppers” within the Basidiomycetes. Several genera, e.g. Bjerkandera, Hericium, Phlebia, and Trametes, produce significant amounts of chlorinated compounds but are also highly effective in metabolizing or biotransforming chlorinated pollutants.

Publisher

Annual Reviews

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3