Affiliation:
1. Meningitis and Special Pathogens Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333
2. Division of Medical Biology, Bacteriology Department, Adolfo Lutz Institute, São Paulo, SP, Brazil
Abstract
ABSTRACT
We investigated the diversity of the primary sequences of 16S rRNA genes among
Neisseria meningitidis
strains (Men) and evaluated the use of this approach as a molecular subtyping tool. We aligned and compared a 1,417-bp fragment of the 16S rRNA gene from 264 Men strains of serogroups A, B, C, and Y (MenA, MenB, MenC, and MenY, respectively) isolated throughout the world over a 30-year period. Thirty-one positions of difference were found among 49 16S types: differences between types ranged from 1 to 14 positions (0.07 to 0.95%). 16S types and serogroups were highly associated; only 3 out 49 16S types were shared by two or more serogroups. We have identified 16S types that are exclusively associated with strains of certain hypervirulent clones: 16S type 5 with MenA subgroup III, 16S type 4 with the MenB electrophoretic type 5 (ET-5) complex, and 16S types 12 and 13 with MenC of the ET-37 complex. For MenC strains, 16S sequencing provided the highest sensitivity and specificity and the best overall association with the outbreak-related versus sporadic isolates when compared with pulsed-field gel electrophoresis, multilocus enzyme electrophoresis, and multilocus sequence typing. We demonstrated for the first time an unexpected diversity among 16S rRNA genes of Men strains, identified 16S types associated with well-defined hypervirulent clones, and showed the potential of this approach to rapidly identify virulent strains associated with outbreaks and/or an increased incidence of sporadic disease.
Publisher
American Society for Microbiology
Reference38 articles.
1. Achtman, M., A. van der Ende, P. Zhu, I. S. Koroleva, B. Kusecek, G. Morelli, I. G. Schuurman, N. Brieske, K. Zurth, N. N. Kostyukova, and A. E. Platonov. 2001. Molecular epidemiology of serogroup A meningitis in Moscow, 1969 to 1997. Emerg. Infect. Dis.7:420-427.
2. Genetic Diversity of
Neisseria lactamica
Strains from Epidemiologically Defined Carriers
3. Phylogenetic identification and in situ detection of individual microbial cells without cultivation
4. Anonymous. 1997. Control and prevention of meningococcal disease and control and prevention of serogroup C meningococcal disease: evaluation and management of suspected outbreaks. Morb. Mortal. Wkly. Rep.46:1-21.
5. Bygraves, J. A., and M. C. Maiden. 1992. Analysis of the clonal relationships between strains of Neisseria meningitidis by pulsed-field gel electrophoresis. J. Gen. Microbiol.138:523-531.
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献