Ross River Virus Envelope Glycans Contribute to Type I Interferon Production in Myeloid Dendritic Cells

Author:

Shabman Reed S.1,Rogers Kristin M.1,Heise Mark T.1

Affiliation:

1. Department of Genetics, Department of Microbiology and Immunology, and Carolina Vaccine Institute, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina 27599

Abstract

ABSTRACT Alphaviruses are mosquito-transmitted viruses that cause significant human disease, and understanding how these pathogens successfully transition from the mosquito vector to the vertebrate host is an important area of research. Previous studies demonstrated that mosquito and mammalian-cell-derived alphaviruses differentially induce type I interferons (alpha/beta interferon [IFN-α/β]) in myeloid dendritic cells (mDCs), where the mosquito cell-derived virus is a poor inducer of IFN-α/β compared to the mammalian-cell-derived virus. Furthermore, the reduced IFN-α/β induction by the mosquito cell-derived virus is attributed to differential N-linked glycosylation (29). To further evaluate the role of viral envelope glycans in regulating the IFN-α/β response, studies were performed to assess whether the mosquito cell-derived virus actively inhibits IFN-α/β induction or is simply a poor inducer of IFN-α/β. Coinfection studies using mammalian- and mosquito cell-derived Ross River virus (mam-RRV and mos-RRV, respectively) indicated that mos-RRV was unable to suppress IFN-α/β induction by mam-RRV in mDC cultures. Additionally, a panel of mutant viruses lacking either individual or multiple N-linked glycosylation sites was used to demonstrate that N-linked glycans were essential for high-level IFN-α/β induction by the mammalian-cell-derived virus. These results suggest that the failure of the mosquito cell-derived virus to induce IFN-α/β is due to a lack of complex carbohydrates on the virion rather than the active suppression of the DC antiviral response.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3