Effects of Human Cytomegalovirus Major Immediate-Early Proteins in Controlling the Cell Cycle and Inhibiting Apoptosis: Studies with ts 13 Cells

Author:

Lukac David M.1,Alwine James C.1

Affiliation:

1. Department of Microbiology, Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6142

Abstract

ABSTRACT The major immediate-early (MIE) gene of human cytomegalovirus (HCMV) encodes several MIE proteins (MIEPs) produced as a result of alternative splicing and polyadenylation of the primary transcript. Previously we demonstrated that the HCMV MIEPs expressed from the entire MIE gene could rescue the temperature-sensitive ( ts ) transcriptional defect in the ts 13 cell line. This defect is caused by a ts mutation in TAF II 250, the 250-kDa TATA binding protein-associated factor (TAF). These and other data suggested that the MIEPs perform a TAF-like function in complex with the basal transcription factor TFIID. In addition to the transcriptional defect, the ts mutation in ts 13 cells results in a defect in cell cycle progression which ultimately leads to apoptosis. Since all of these defects can be rescued by wild-type TAF II 250, we asked whether the MIEPs could rescue the cell cycle defect and/or affect the progression to apoptosis. We have found that the MIEPs, expressed from the entire MIE gene, do not rescue the cell cycle block in ts 13 cells grown at the nonpermissive temperature. However, despite the maintenance of the cell cycle block, the ts 13 cells which express the MIEPs are resistant to apoptosis. MIEP mutants, which have previously been shown to be defective in rescuing the ts transcriptional defect, maintained the ability to inhibit apoptosis. Hence, the MIEP functions which affect transcription appear to be separable from the functions which inhibit apoptosis. We discuss these data in the light of the HCMV life cycle and the possibility that the MIEPs promote cellular transformation by a “hit-and-run” mechanism.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3