Human cytomegalovirus IE2 86-kilodalton protein binds p53 but does not abrogate G1 checkpoint function

Author:

Bonin L R1,McDougall J K1

Affiliation:

1. Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA.

Abstract

Physical interactions between human cytomegalovirus (HCMV) immediate-early (IE) proteins and key cell cycle regulatory proteins have been suggested as a mechanism whereby this herpesvirus modifies cellular control of proliferation. Observed similarities to interactions of other DNA virus proteins (human papillomavirus type 16 E6 and E7, simian virus 40 large T antigen, and adenovirus type 5 E1A and E1B) with cell cycle modulatory proteins such as p53 and Rb have suggested that HCMV IE proteins may likewise alter the G1-to-S phase transition. The IE2 region gene product IE86 has been shown to specifically bind p53, potentially modifying p53 G1 checkpoint function. To examine this possibility, p53-mediated G1 arrest in the presence of IE86 was assessed. Retroviral constructs were created to facilitate the stable expression of IE86 and IE72, another IE protein implicated in HCMV-mediated alteration of cell cycle progression. Western analysis and immunoprecipitation confirmed IE protein expression and binding of IE86 to p53, respectively. Chloramphenicol acetyltransferase assays examining the ability of IE86 to repress activity from the HCMV major IE promoter or activate the HCMV early promoter for the 2.2-kb class of RNAs demonstrated the functional integrity of the IE86 protein. Induction of DNA damage in normal, uninfected fibroblasts (FB) or FB expressing IE86 by actinomycin D (Act D) resulted in increased p53 levels, a predominance of the hypophosphorylated form of Rb, and increased expression of both p21(CIP1/WAF1) and mdm-2. Fluorescence-activated cell sorting revealed that both uninfected and IE86-expressing FB experienced dramatic G1 arrest following exposure to Act D. The clear demonstration of these p53-dependent responses in the presence of IE86 indicates that binding to this viral protein does not compromise the ability of p53 to elicit growth arrest following DNA damage.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference72 articles.

1. An isoform variant of the cytomegalovirus immediate-early auto repressor functions as a transcriptional activator;Baracchini E.;Virology,1992

2. mdm2 expression is induced by wild type p53 activity;Barak Y.;EMBO J.,1993

3. Sequence requirements for activation of the HIV-1 LTR by human cytomegalovirus;Biegalke B. J.;Virology,1991

4. Spontaneous abnormalities in normal fibroblasts from patients with Li-Fraumeni cancer syndrome: aneuploidy and immortalization;Bischoff F. Z.;Cancer Res.,1990

5. Epithelial cells immortalized by human papillomaviruses have premalignant characteristics in organotypic culture;Blanton R. A.;Am. J. Pathol.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3