Role of Innate Immune Factors in the Adjuvant Activity of Monophosphoryl Lipid A

Author:

Martin Michael1,Michalek Suzanne M.12,Katz Jannet2

Affiliation:

1. Department of Microbiology

2. Department of Oral Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294

Abstract

ABSTRACT Monophosphoryl lipid A (MPL) is a nontoxic derivative of lipopolysaccharide (LPS) that exhibits adjuvant properties similar to those of the parent LPS molecule. However, the mechanism by which MPL initiates its immunostimulatory properties remains unclear. Due to the involvement of Toll-like receptors in recognizing and transducing intracellular signals in response to LPS, the aim of the present study was to determine the ability of MPL to utilize the Toll-like receptor 2 (TLR2) and TLR4. We provide evidence that MPL differentially utilizes TLR2 and TLR4 for the induction of tumor necrosis factor alpha, interleukin 10 (IL-10), and IL-12 by purified human monocytes as well as by human peripheral blood mononuclear cells. Assessment of NF-κB activity demonstrated that MPL utilized TLR2 and especially TLR4 for the activation of NF-κB p65 by human monocytes. In addition, stimulation of human monocytes by MPL led to an up-regulation of the costimulatory molecules CD80 and CD86, an effect that could be reduced by pretreatment of cells with a monoclonal antibody to TLR2 or TLR4. Analysis of MPL-induced activation of the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinases revealed that MPL utilized both TLR2 and TLR4 for the phosphorylation of ERK1/2, while TLR4 was the predominant receptor involved in the ability of MPL to phosphorylate p38. Moreover, using selective inhibitors for MAP kinase kinase (PD98059) and p38 (SB203580), we show that ERK1/2 exhibited differential effects on production of TNF-α and IL-12 p40 by human monocytes, whereas MPL-induced activation of p38 appeared to be predominantly involved in production of IL-10 and IL-12 p40 by MPL-stimulated monocytes. Taken together, these findings aid in understanding the cellular mechanisms by which MPL induces host cell activation and subsequent adjuvant properties.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3