Rapid Microarray-Based Detection of Rifampin, Isoniazid, and Fluoroquinolone Resistance in Mycobacterium tuberculosis by Use of a Single Cartridge

Author:

Havlicek Juliane1,Dachsel Beatrice1,Slickers Peter1,Andres Sönke2,Beckert Patrick34,Feuerriegel Silke34,Niemann Stefan34,Merker Matthias34,Labugger Ines1

Affiliation:

1. Alere Technologies GmbH, Jena, Germany

2. National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany

3. Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany

4. German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel, Borstel, Germany

Abstract

ABSTRACT The rapid and robust identification of mutations in Mycobacterium tuberculosis complex (MTBC) strains mediating multidrug-resistant (MDR) and extensively drug-resistant (XDR) phenotypes is crucial to combating the MDR tuberculosis (TB) epidemic. Currently available molecular anti-TB drug susceptibility tests either are restricted to a single target or drug (i.e., the Xpert MTB/RIF test) or present a risk of cross-contamination due to the design limitations of the open platform (i.e., line probe assays). With a good understanding of the technical and commercial boundaries, we designed a test cartridge based on an oligonucleotide array into which dried reagents are introduced and which has the ability to identify MTBC strains resistant to isoniazid, rifampin, and the fluoroquinolones. The melting curve assay interrogates 43 different mutations in the rifampin resistance-determining region (RRDR) of rpoB , rpoB codon 572, katG codon 315, the inhA promoter region, and the quinolone resistance-determining region (QRDR) of gyrA in a closed cartridge system within 90 min. Assay performance was evaluated with 265 clinical MTBC isolates, including MDR/XDR, non-MDR, and fully susceptible isolates, from a drug resistance survey performed in Swaziland in 2009 and 2010. In 99.5% of the cases, the results were consistent with data previously acquired utilizing Sanger sequencing. The assay, which uses a closed cartridge system in combination with a battery-powered Alere q analyzer and which has the potential to extend the current gene target panel, could serve as a rapid and robust point-of-care test in settings lacking a comprehensive molecular laboratory infrastructure to differentiate TB patients infected with MDR and non-MDR strains and to assist clinicians with their early treatment decisions.

Funder

Bill and Melinda Gates Foundation

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3