Glycocalyx Restricts Adenoviral Vector Access to Apical Receptors Expressed on Respiratory Epithelium In Vitro and In Vivo: Role for Tethered Mucins as Barriers to Lumenal Infection

Author:

Stonebraker Jaclyn R.1,Wagner Danielle1,Lefensty Robert W.1,Burns Kimberlie1,Gendler Sandra J.2,Bergelson Jeffrey M.3,Boucher Richard C.1,O'Neal Wanda K.1,Pickles Raymond J.14

Affiliation:

1. Cystic Fibrosis/Pulmonary Research and Treatment Center

2. Mayo Clinic Scottsdale, Scottsdale, Arizona

3. Division of Immunologic and Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania

4. Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Abstract

ABSTRACT Inefficient adenoviral vector (AdV)-mediated gene transfer to the ciliated respiratory epithelium has hindered gene transfer strategies for the treatment of cystic fibrosis lung disease. In part, the inefficiency is due to an absence of the coxsackie B and adenovirus type 2 and 5 receptor (CAR) from the apical membranes of polarized epithelia. In this study, using an in vitro model of human ciliated airway epithelium, we show that providing a glycosylphosphatidylinositol (GPI)-linked AdV receptor (GPI-CAR) at the apical surface did not significantly improve AdV gene transfer efficiency because the lumenal surface glycocalyx limited the access of AdV to apical GPI-CAR. The highly glycosylated tethered mucins were considered to be significant glycocalyx components that restricted AdV access because proteolytic digestion and inhibitors of O-linked glycosylation enhanced AdV gene transfer. To determine whether these in vitro observations are relevant to the in vivo situation, we generated transgenic mice expressing GPI-CAR at the surface of the airway epithelium, crossbred these mice with mice that were genetically devoid of tethered mucin type 1 (Muc1), and tested the efficiency of gene transfer to murine airways expressing apical GPI-human CAR (GPI-hCAR) in the presence and absence of Muc1. We determined that AdV gene transfer to the murine airway epithelium was inefficient even in GPI-hCAR transgenic mice but that the gene transfer efficiency improved in the absence of Muc1. However, the inability to achieve a high gene transfer efficiency, even in mice with a deletion of Muc1, suggested that other glycocalyx components, possibly other tethered mucin types, also provide a significant barrier to AdV interacting with the airway lumenal surface.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3