Affiliation:
1. Zentrum für Infektionsforschung, Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
2. Lehrstuhl für Zellbiologie, Universität Konstanz, Postfach X908, 78457 Konstanz, Germany
Abstract
ABSTRACT
Several pathogenic bacteria exploit human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) for adhesion to and invasion into their host cells. CEACAM isoforms have characteristic expression patterns on epithelial, endothelial, or hematopoietic cells, providing bacteria with distinct sets of receptors on particular tissues. For example, while CEACAM1 and CEACAM6 have a wide tissue distribution, CEACAM3, CEACAM4, and CEACAM8 are uniquely expressed on primary human granulocytes, whereas CEA and CEACAM7 are limited to epithelia. By reconstitution of a CEACAM-deficient cell line with individual CEACAMs, we have analyzed the requirements for CEACAM-mediated internalization of
Neisseria gonorrhoeae
. Our results point to two mechanistically different uptake pathways triggered by either epithelial CEACAMs (CEACAM1, CEA, and CEACAM6) or the granulocyte-specific CEACAM3. In particular, CEACAM3-mediated uptake critically depends on Src family protein tyrosine kinase (PTK) activity, and CEACAM3 associates with the SH2 domains of several Src PTKs. In contrast, epithelial CEACAMs require the integrity of cholesterol-rich membrane microdomains and are affected by cholesterol depletion, whereas CEACAM3-mediated uptake by transfected cells or the opsonin-independent phagocytosis by human granulocytes is not altered in the presence of cholesterol chelators. These results allow the subdivision of all human CEACAMs known to be utilized as pathogen receptors into functional groups and point to important consequences for bacterial engagement of distinct CEACAM isoforms.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Reference48 articles.
1. Agerer, F., A. Michel, K. Ohlsen, and C. R. Hauck. 2003. Integrin-mediated invasion of Staphylococcus aureus into human cells requires Src family protein tyrosine kinases. J. Biol. Chem.278:42524-42531.
2. Baorto, D. M., Z. Gao, R. Malaviya, M. L. Dustin, A. van der Merwe, D. M. Lublin, and S. N. Abraham. 1997. Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature389:636-639.
3. Bos, M. P., D. Hogan, and R. J. Belland. 1999. Homologue scanning mutagenesis reveals CD66 receptor residues required for neisserial Opa protein binding. J. Exp. Med.190:331-340.
4. Bradley, C. J., N. J. Griffiths, H. A. Rowe, R. S. Heyderman, and M. Virji. 2005. Critical determinants of the interactions of capsule-expressing Neisseria meningitidis with host cells: the role of receptor density in increased cellular targeting via the outer membrane Opa proteins. Cell. Microbiol.7:1490-1503.
5. Brummer, J., M. Neumaier, C. Gopfert, and C. Wagener. 1995. Association of pp60c-src with biliary glycoprotein (CD66a), an adhesion molecule of the carcinoembryonic antigen family downregulated in colorectal carcinomas. Oncogene11:1649-1655.
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献