Functional Genomics of Enterococcus faecalis : Multiple Novel Genetic Determinants for Biofilm Formation in the Core Genome

Author:

Ballering Katie S.1,Kristich Christopher J.1,Grindle Suzanne M.1,Oromendia Ana1,Beattie David T.2,Dunny Gary M.1

Affiliation:

1. Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455

2. Avant Immunotherapeutics, Inc., Needham, Massachusetts 02494

Abstract

ABSTRACT The ability of Enterococcus faecalis to form robust biofilms on host tissues and on abiotic surfaces such as catheters likely plays a major role in the pathogenesis of opportunistic antibiotic-resistant E. faecalis infections and in the transfer of antibiotic resistance genes. We have carried out a comprehensive analysis of genetic determinants of biofilm formation in the core genome of E. faecalis . Here we describe 68 genetic loci predicted to be involved in biofilm formation that were identified by r ecombinase i n v ivo e xpression t echnology (RIVET); most of these genes have not been studied previously. Differential expression of a number of these determinants during biofilm growth was confirmed by quantitative reverse transcription-PCR, and genetic complementation studies verified a role in biofilm formation for several candidate genes. Of particular interest was genetic locus EF1809, predicted to encode a regulatory protein of the GntR family. We isolated 14 independent nonsibling clones containing the putative promoter region for this gene in the RIVET screen; EF1809 also showed the largest increase in expression during biofilm growth of any of the genes tested. Since an in-frame deletion of EF1809 resulted in a severe biofilm defect that could be complemented by the cloned wild-type gene, we have designated EF1809 ebrA ( e nterococcal b iofilm r egulator). Most of the novel genetic loci identified in our studies are highly conserved in gram-positive bacterial pathogens and may thus constitute a pool of uncharacterized genes involved in biofilm formation that may be useful targets for drug discovery.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3