Development of an Improved System for the Generation of Knockout Mutants of Amycolatopsis sp. Strain ATCC 39116

Author:

Meyer Florian1,Pupkes Hilke1,Steinbüchel Alexander12

Affiliation:

1. Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany

2. Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

ABSTRACT The Gram-positive actinomycete Amycolatopsis sp. strain ATCC 39116 is used for the industrial production of natural vanillin. Previously, the only gene deletion performed in this strain targeted the gene vdh , coding for a vanillin dehydrogenase. The generation of this mutant suffered from a high number of illegitimate recombinations and a low rate of homologous recombination. To alleviate this, we constructed an optimized deletion system based on a modified suicide vector. Thereby, we were able to increase the rate of homologous integration from less than 1% of the analyzed clones to 20% or 50%, depending on the targeted gene. We were furthermore able to reduce the screening effort needed to identify homogenotes through the use of the rpsL gene from Saccharopolyspora erythraea , which confers streptomycin sensitivity on clones still carrying the suicide vector. The new suicide vector is p6SUI5ERPSL, and its applicability was demonstrated by the deletion of three Amycolatopsis gene clusters. The deletion of the first of the gene clusters, coding for an aldehyde oxidase ( yagRST ), led to no altered phenotype compared to the parent strain; deletion of the second, coding for a vanillic acid decarboxylase ( vdcBCD ), led to a phenotype that was strongly impaired in its growth with vanillic acid as the sole carbon source and also unable to form guaiacol; and deletion of the third, coding for a vanillate demethylase ( vanAB ), led to only a negligible impact in comparison. Therefore, we showed that decarboxylation of vanillic acid is the main degradation pathway in Amycolatopsis sp. ATCC 39116 while the demethylation plays only a minor role and does not compensate the deletion of vdcBCD . IMPORTANCE Amycolatopsis sp. ATCC 39116 is an important microorganism used for the production of natural vanillin from ferulic acid. In contrast to this importance, it has previously been shown that this strain is hard to manipulate on a genetic level. We therefore generated an optimized system to facilitate the deletion of genes in this strain. This allowed us to greatly reduce the time and work requirements for generating deletions. This could allow the improvement of vanillin production in the future and also the elucidation of metabolic pathways. To test our deletion system, we deleted three gene clusters in Amycolatopsis sp. ATCC 39116. One showed no involvement in the metabolism of vanillin, while the second proved to be the main pathway of vanillic acid degradation and completely stopped the formation of the off-flavor guaiacol. The third appeared to have only a negligible impact on the degradation of vanillic acid.

Funder

Symrise AG

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3