Characterization of Microbial Community Structure in Gulf of Mexico Gas Hydrates: Comparative Analysis of DNA- and RNA-Derived Clone Libraries
-
Published:2005-06
Issue:6
Volume:71
Page:3235-3247
-
ISSN:0099-2240
-
Container-title:Applied and Environmental Microbiology
-
language:en
-
Short-container-title:Appl Environ Microbiol
Author:
Mills Heath J.1, Martinez Robert J.1, Story Sandra1, Sobecky Patricia A.1
Affiliation:
1. School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332
Abstract
ABSTRACT
The characterization of microbial assemblages within solid gas hydrate, especially those that may be physiologically active under in situ hydrate conditions, is essential to gain a better understanding of the effects and contributions of microbial activities in Gulf of Mexico (GoM) hydrate ecosystems. In this study, the composition of the
Bacteria
and
Archaea
communities was determined by 16S rRNA phylogenetic analyses of clone libraries derived from RNA and DNA extracted from sediment-entrained hydrate (SEH) and interior hydrate (IH). The hydrate was recovered from an exposed mound located in the northern GoM continental slope with a hydrate chipper designed for use on the manned-submersible
Johnson Sea Link
(water depth, 550 m). Previous geochemical analyses indicated that there was increased metabolic activity in the SEH compared to the IH layer (B. N. Orcutt, A. Boetius, S. K. Lugo, I. R. Macdonald, V. A. Samarkin, and S. Joye, Chem. Geol. 205:239-251). Phylogenetic analysis of RNA- and DNA-derived clones indicated that there was greater diversity in the SEH libraries than in the IH libraries. A majority of the clones obtained from the metabolically active fraction of the microbial community were most closely related to putative sulfate-reducing bacteria and anaerobic methane-oxidizing archaea. Several novel bacterial and archaeal phylotypes for which there were no previously identified closely related cultured isolates were detected in the RNA- and DNA-derived clone libraries. This study was the first phylogenetic analysis of the metabolically active fraction of the microbial community extant in the distinct SEH and IH layers of GoM gas hydrate.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Reference44 articles.
1. Chao, A. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics43:783-791. 2. Clifford, S. M., D. Crisp, D. A. Fisher, K. E. Herkenhoff, S. E. Smrekar, P. C. Thomas, D. D. Wynn-Williams, R. W. Zurek, J. R. Barnes, B. G. Bills, E. W. Blake, W. M. Calvin, J. M. Cameron, M. H. Carr, P. R. Christensen, B. C. Clark, G. D. Clow, J. A. Cutts, D. Dahl-Jensen, W. B. Durham, F. P. Fanale, J. D. Farmer, F. Forget, K. Gotto-Azuma, R. Grard, R. M. Haberle, W. Harrison, R. Harvey, A. D. Howard, A. P. Ingersoll, P. B. James, J. S. Kargel, H. H. Kieffer, J. Larsen, K. Lepper, M. C. Malin, D. J. McCleese, B. Murray, J. F. Nye, D. A. Paige, S. R. Platt, J. J. Plaut, N. Reeh, J. W. Rice, D. E. Smith, C. R. Stoker, K. L. Tanaka, E. Mosley-Thompson, T. Thorsteinsson, S. E. Wood, A. Zent, M. T. Zuber, and H. J. Zwally. 2000. The state and future of Mars polar science and exploration. Icarus144:210-242. 3. Colwell R. K. 1997. EstimateS: statistical estimation of species richness and shared species from samples version 5. User's guide and application. [Online.] http://viceroy.eeb.uconn.edu/estimates
. 4. Colwell, R. K., and J. A. Coddington. 1994. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R. Soc. Lond. B Biol. Sci.345:101-118. 5. Nucleic Acid (DNA, RNA) Quantification and RNA/DNA Ratio Determination in Marine Sediments: Comparison of Spectrophotometric, Fluorometric, and HighPerformance Liquid Chromatography Methods and Estimation of Detrital DNA
Cited by
119 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|