Monitoring Stress-Related Genes during the Process of Biomass Propagation of Saccharomyces cerevisiae Strains Used for Wine Making

Author:

Pérez-Torrado Roberto12,Bruno-Bárcena Jose M.3,Matallana Emilia12

Affiliation:

1. Departamento Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de Valencia, Apartado 73, E-46100 Burjassot, Spain

2. Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Apartado 73, E-46100 Burjassot, Spain

3. Planta Piloto de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Apartado 73, E-46100 Burjassot, Spain

Abstract

ABSTRACT Physiological capabilities and fermentation performance of Saccharomyces cerevisiae strains to be employed during industrial wine fermentations are critical for the quality of the final product. During the process of biomass propagation, yeast cells are dynamically exposed to a mixed and interrelated group of known stresses such as osmotic, oxidative, thermic, and/or starvation. These stressing conditions can dramatically affect the parameters of the fermentation process and the technological abilities of the yeast, e.g., the biomass yield and its fermentative capacity. Although a good knowledge exists of the behavior of S. cerevisiae under laboratory conditions, insufficient knowledge is available about yeast stress responses under the specific media and growth conditions during industrial processes. We performed growth experiments using bench-top fermentors and employed a molecular marker approach (changes in expression levels of five stress-related genes) to investigate how the cells respond to environmental changes during the process of yeast biomass production. The data show that in addition to the general stress response pathway, using the HSP12 gene as a marker, other specific stress response pathways were induced, as indicated by the changes detected in the mRNA levels of two stress-related genes, GPD1 and TRX2 . These results suggest that the cells were affected by osmotic and oxidative stresses, demonstrating that these are the major causes of the stress response throughout the process of wine yeast biomass production.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3