Involvement of CD14 and β2-Integrins in Activating Cells with Soluble and Particulate Lipopolysaccharides and Mannuronic Acid Polymers

Author:

Flo Trude H.1,Ryan Liv1,Kilaas Lars2,Skjåk-Bræk Gudmund3,Ingalls Robin R.4,Sundan Anders1,Golenbock Douglas T.4,Espevik Terje1

Affiliation:

1. Department of Cancer Research and Molecular Biology1 and

2. SINTEF, Division of Applied Chemistry,2 Trondheim, Norway, and

3. Department of Biotechnology, Norwegian University of Science and Technology,3 and

4. Maxwell Finland Laboratory for Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts 021184

Abstract

ABSTRACT Lipopolysaccharide (LPS) and related bacterial products can be recognized by host inflammatory cells in a particulate, bacterium-bound form, as well as in various soluble, released forms. In the present study we have compared the mechanisms used by LPS, detoxified LPS (DLPS), and mannuronic acid polymers (M-polymers), in solution or covalently linked to particles, in stimulating monocytes to tumor necrosis factor (TNF) production. The addition of recombinant LPS binding protein (LBP) and/or soluble CD14 (sCD14) enhanced the production of TNF from monocytes stimulated with soluble LPS, DLPS, or M-polymer, but did not affect the response to M-polymer or DLPS attached to particles. Treatment of monocytes with antibody to CD14, CD18, or CD11b showed that CD14, but not CR3 (CD11b/CD18), mediated monocyte TNF production in response to the soluble antigens. In contrast, anti-CD14, anti-CD11b and anti-CD18 monoclonal antibodies all inhibited the response to the particulate stimuli. On the other hand, B975, a synthetic analog of Rhodobacter capsulatus lipid A, completely abrogated the monocyte TNF response induced by LPS but did not affect the TNF induction by DLPS or M-polymer, either in soluble or particulate forms. These data demonstrate that the engagement of immune receptors by bacterial products such as LPS, DLPS, and M-polymer is dependent upon the presentation form of their constituent carbohydrates, and that factors such as aggregation state, acylation, carbohydrate chain length, and solid versus liquid phase of bacterial ligands influence the mechanisms used by cells in mediating proinflammatory responses.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3