Affiliation:
1. Department of Developmental Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
Abstract
Mammalian liver development is accompanied by a transition from rapid growth in the fetus to a quiescent state in the adult. However, extensive proliferation can be induced in the adult liver by partial hepatectomy. In this study, we examined the regulation of ribosomal protein (rp) gene expression in the developing and regenerating rat liver. Our results indicate that the translation of rp mRNAs is selectively repressed by about 70% upon development from fetal to adult life, as illustrated by the decrease in ribosomal loading. In addition, the relative abundance of these mRNAs, like that of several other, but not all, housekeeping mRNAs, declines during development through a posttranscriptional mechanism. When liver cells commence growth following partial hepatectomy, translation of rp mRNAs is resumed to near-maximal capacity, as judged by their very efficient recruitment into polysomes. The concomitant increase in the abundance rp mRNAs under these circumstances is achieved by a posttranscriptional mechanism. The apparent fluctuations in the translation efficiency of rp mRNAs are accompanied by parallel changes in the expression of the genes encoding the initiation factors eIF-4E and eIF-4A. Our results indicate that selective translational control of rp mRNAs in mammals is not confined to manipulated cells in culture but constitutes an important regulatory mechanism operating in vivo in the course of liver development and regeneration.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology