Hepatocyte Nuclear Factor-1α Modulates Pancreatic β-Cell Growth by Regulating the Expression of Insulin-Like Growth Factor-1 in INS-1 Cells

Author:

Yang Qin1,Yamagata Kazuya1,Fukui Kenji1,Cao Yang1,Nammo Takao1,Iwahashi Hiromi1,Wang Haiyan2,Matsumura Itaru3,Hanafusa Toshiaki4,Bucala Richard5,Wollheim Claes B.2,Miyagawa Jun-ichiro1,Matsuzawa Yuji1

Affiliation:

1. Department of Internal Medicine and Molecular Science, Biomedical Research Center, Graduate School of Medicine, Osaka University, Osaka, Japan

2. Division of Clinical Biochemistry, Department of Internal Medicine, Geneva University Medical Center, Geneva, Switzerland

3. Department of Hematology/Oncology, Biomedical Research Center, Graduate School of Medicine, Osaka University, Osaka, Japan

4. First Department of Internal Medicine, Osaka Medical College, Osaka, Japan

5. Picower Institute for Medical Research, Manhasset, New York

Abstract

Maturity-onset diabetes of the young type 3 (MODY3) is characterized by impaired insulin secretion. Heterozygous mutations in the gene encoding hepatocyte nuclear factor (HNF)-1α are the cause of MODY3. Transgenic mice overexpressing dominant-negative HNF-1α mutant in pancreatic β-cells and HNF-1α knockout mice are animal models of MODY3. These mice exhibit defective glucose-stimulated insulin secretion and have reduced β-cell mass and β-cell proliferation rate. Here we examined the effect of HNF-1α on β-cell proliferation by overexpressing a human naturally occurring dominant- negative mutation P291fsinsC in INS-1 cells under the control of doxycycline-induction system. INS-1 cells overexpressing P291fsinsC showed apparent growth impairment. The proliferation rate estimated by [3H]thymidine incorporation was significantly reduced in P291fsinsC-expressing INS-1 cells compared with noninduced or wild-type HNF-1α-overexpressing INS-1 cells. Growth inhibition occurred at the transition from G1 to S cell cycle phase, with reduced expression of cyclin E and upregulation of p27. cDNA array analysis revealed that the expression levels of IGF-1, a major growth factor for β-cells, and macrophage migration inhibitory factor (MIF), a cytokine expressed in pancreatic β-cells, were reduced in P291fsinsC-HNF-1α–expressing INS-1 cells. Although MIF seemed to have proliferative function, blockade of MIF action by anti-MIF antibody stimulated INS-1 cell proliferation, excluding its direct role in the growth impairment. However, addition of IGF-1 to P291fsinsC–expressing INS-1 cells rescued the growth inhibition. Our data suggest that HNF-1α is critical for modulating pancreatic β-cell growth by regulating IGF-1 expression. IGF-1 might be a potential therapeutic target for the treatment of MODY3.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3