Coordination of immunoglobulin DJH transcription and D-to-JH rearrangement by promoter-enhancer approximation.

Author:

Alessandrini A,Desiderio S V

Abstract

The genes that encode the variable regions of immunoglobulin (Ig) heavy chains are encoded by three DNA segments: VH, D, and JH. During B-cell development these segments are brought together by a pair of site-specific DNA rearrangements. The first of these joins a D segment to a JH segment; the second brings a VH segment in apposition to a DJH unit. B-cell precursors that have undergone D-to-JH joining express transcripts that initiate at the 5' flanks of rearranged D segments (DJH transcription). In this study we have examined the coordination of D-to-JH rearrangement and DJH transcription. The B-lymphoid progenitor cell line HAFTL-1 cell clone, joining of distal D segments (DSP2 and DFL16) to JH is accompanied by an increase in the steady-state level of transcripts initiating 5' of the D coding region. Steady-state transcription of a DSP2 gene segment was undetectable prior to rearrangement and was observed to increase at least 20-fold upon joining to JH. In contrast, transcription from the 5' flank of DQ52, which lies within 700 bp of the JH cluster, was detected prior to rearrangement and did not increase significantly after rearrangement. The 5' flank of a DSP2 segment was found to support expression of a heterologous gene upon transfection into B progenitor cell lines. Expression from this DSP2 promoter was at least 30-fold higher in the presence of the Ig heavy-chain enhancer, in either orientation, than in its absence. A DNA fragment spanning the interval from -165 to +19 bp relative to the major DSP2 transcriptional start site retained enhancer-dependent promoter activity. These observations imply that activation of DSP12JH and DFL16JH transcription is coordinated with D-to-JH rearrangement by approximation of enhancer-dependent D promoter elements to the Ig heavy-chain enhancer. This interpretation is consistent with our observation that the DQ52 segment, which is closely linked to the JH cluster, is transcribed both before and after rearrangement.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3