Alpha and Lambda Interferon Together Mediate Suppression of CD4 T Cells Induced by Respiratory Syncytial Virus

Author:

Chi Bo1,Dickensheets Harold L.2,Spann Kirsten M.3,Alston Marc A.1,Luongo Cindy3,Dumoutier Laure4,Huang Jiaying5,Renauld Jean-Christophe4,Kotenko Sergei V.5,Roederer Mario3,Beeler Judy A.1,Donnelly Raymond P.2,Collins Peter L.3,Rabin Ronald L.1

Affiliation:

1. Center for Biologics Evaluation and Research

2. Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland

3. National Institute of Allergy and Infectious Diseases, Bethesda, Maryland

4. Ludwig Institute for Cancer Research, Brussels Branch, and Experimental Medicine Unit, Université de Louvain, Brussels, Belgium

5. Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey

Abstract

ABSTRACT The mechanism by which respiratory syncytial virus (RSV) suppresses T-cell proliferation to itself and other antigens is poorly understood. We used monocyte-derived dendritic cells (MDDC) and CD4 T cells and measured [ 3 H]thymidine incorporation to determine the factors responsible for RSV-induced T-cell suppression. These two cell types were sufficient for RSV-induced suppression of T-cell proliferation in response to cytomegalovirus or Staphylococcus enterotoxin B. Suppressive activity was transferable with supernatants from RSV-infected MDDC and was not due to transfer of live virus or RSV F (fusion) protein. Supernatants from RSV-infected MDDC, but not MDDC exposed to UV-killed RSV or mock conditions, contained alpha interferon (IFN-α; median, 43 pg/ml) and IFN-λ (approximately 1 to 20 ng/ml). Neutralization of IFN-α with monoclonal antibody (MAb) against one of its receptor chains, IFNAR2, or of IFN-λ with MAb against either of its receptor chains, IFN-λR1 (interleukin 28R [IL-28R]) or IL-10R2, had a modest effect. In contrast, blocking the two receptors together markedly reduced or completely blocked the RSV-induced suppression of CD4 T-cell proliferation. Defining the mechanism of RSV-induced suppression may guide vaccine design and provide insight into previously uncharacterized human T-cell responses and activities of interferons.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3